
Solving Nonlinear
Problems with Gurobi
Dan Jeffrey
Senior Technical Account Manager

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Nonlinear API’s in Gurobi

4. New MINLP Solver

5. Model Walkthrough

4 Gurobi Model Types for
Nonlinear Models
… or maybe 8, depends how you count!

Quadratic terms
 Quadratic solvers in Gurobi: QP, QCP,

MIQP, MIQCP, non-convex MIQCP

Higher-order Nonlinear terms
 Piece-wise linear constraints

 Manual - Specify piecewise points manually

 Automatic Functions

 Mixed Integer Nonlinear Programs (MINLP)

 Nested quadratic

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Nonlinear API’s in Gurobi

4. New MINLP Solver

5. Model Walkthrough

The world is full of well-known nonlinear relationships
across all industries.

• Physical laws (e.g., in energy systems)
• Statistical measures (e.g., in finance, etc.)
• Nonlinear regression (explaining data points with nonlinear

functions)

Many optimization software systems today work only with
approximations that deliver acceptable performance and
accuracy. Time to try the new alternative – MINLP!

General Use Cases
& Messaging Performance

Accuracy

Finance
Market impact term in
programmed trading applications

Portfolio Optimization –
Use nonlinear to identify optimal
allocation of assets.

𝑦𝑦= 𝑥𝑥3/2

Utilities
AC Optimal Power Flow

Includes sine and cosine functions
to accurately depict power flow.

Oil & Gas
Many applications in refineries

Nonlinear is essential to accurately
model complex processes.

Heat exchanger
(x-y)/(log x – log y)

Engineering

Engineering designs must ensure certain
physical properties that cannot be stated with
linear relationships.

Agriculture

Crop planning and management to optimize
planting schedules, irrigation, and fertilizer

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Nonlinear API’s in Gurobi

4. New MINLP Solver

5. Model Walkthrough

Solver Algorithms Available in
Gurobi Optimizer
Gurobi solves a broad variety of problem types

Non-Convex
MIQCP

MILP
(including PWL) MIQP Convex

MIQCP

LP QP QCP

MINLP

QP – Quadratic Programs
• Objective contains quadratic terms
𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥𝑇𝑇𝑄𝑄 𝑥𝑥 + 𝑝𝑝𝑇𝑇𝑥𝑥
𝑠𝑠. 𝑡𝑡. 𝐴𝐴𝑥𝑥 = 𝑏𝑏
 𝑥𝑥 ≥ 0

QCP
𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑞𝑞𝑞𝑞𝑞𝑞 ≤ 𝑏𝑏
𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 ≤ 𝑦𝑦
𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 ≤ 𝑦𝑦𝑦𝑦

MIQP
• Same as QP where x is integer

MIQCP
• Same as QCP where x is integer

non-convex MIQCP
• Automatic in Gurobi 11 – no

parameter needed

Quadratic Terms

Confirm the Need for Nonlinear

Harder/slower to solve

Business value of a precise Nonlinear solution?

Examine ways to approximate
• See next slide

Is the Nonlinear curve really an approximation?
• Is truly continuous?
• Machine-learning alternatives

• Integrate with a Gurobi linear program
• gurobipy-machinelearning

Confirm the Need for Nonlinear

Nested quadratics
• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧 = 𝑥𝑥3
• 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤:

𝑦𝑦 == 𝑥𝑥 � 𝑥𝑥
𝑧𝑧 == 𝑦𝑦 � 𝑥𝑥

Multivariate monomial terms
• “How do I model multilinear terms in Gurobi?” -- https://bit.ly/3vjz6fe
• For this constraint:

𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧 == 𝑑𝑑
• Use this instead:

𝑥𝑥 � 𝑦𝑦 = 𝑤𝑤
𝑤𝑤 � 𝑧𝑧 = 𝑑𝑑

https://bit.ly/3vjz6fe

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Nonlinear API’s in Gurobi

4. New MINLP Solver

5. Model Walkthrough

General Constraints

Gurobi supports
two types of
general constraints
Different algorithmic
implementations

General
Constraints

Simple General
Constraints

min(), max()
or(), norm() …

Function Constraints
power(), sine(),

polynomial() =, …

Represented as MIP
via additional

constraints & vars

Default: Piecewise
linear approximation

FuncNonLinear = 1
Solve as MINLP

(exact)

Option 1: Manual
piecewise terms

addGenConstrPWL()

Option 2: Automatic
Function

addGenConstrXXX()

APIs for Nonlinear Constraints in Gurobi

API’s to define nonlinear functions (Gurobi 9.0+)

Gurobi 9.0 – 10.0:
• Nonlinear functions always replaced by piecewise-linear approximations

Gurobi 11.0:
• You choose how treat nonlinear constraints

• Approximation using piecewise linear
• Exactly using MINLP solver

Functions API’s

𝑒𝑒𝑥𝑥 , 𝑎𝑎𝑥𝑥 addGenConstrExp() addGenConstrExpA()

ln 𝑥𝑥 , log𝑎𝑎(𝑥𝑥) addGenConstrLog() addGenConstrLogA()

sin 𝑥𝑥 , cos 𝑥𝑥 , tan 𝑥𝑥 addGenConstrSin() addGenConstrCos() addGenConstrTan()

𝑥𝑥𝑎𝑎 addGenConstrPow()

𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 addGenConstrPoly()

Composite Nonlinear Functions

Gurobi 11.0 can handle selected univariate constraints 𝑓𝑓(𝑥𝑥) = 𝑦𝑦
• Trigonometric, power functions, logarithms, exponentials, etc.
• Use them as building blocks for more elaborate functions

Significant
effects on
overall
tolerances.

More in a
coming slide.

Suppose we want to model this:
𝑓𝑓 x = 1 + x2 + ln x + 1 + x2 ≤ 2, x ≥ 0

We introduce auxiliary variables 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑧𝑧 ≥ 0 and constraints as follows:
 u = 1 + x2 𝑢𝑢 = 𝑣𝑣2

 𝑤𝑤 = x + 𝑣𝑣 𝑧𝑧 = ln 𝑤𝑤

Then 𝑓𝑓 x ≤ 2 can be represented as:
 𝑣𝑣 + 𝑧𝑧 ≤ 2

Limitations of Univariate API’s

Example: y = 𝑥𝑥
sin 𝑥𝑥

One solution:
• 𝑥𝑥𝑥 = 0.0001
• 𝑦𝑦′ = 1.0000000016666666

Gurobi model: 𝑢𝑢 = sin 𝑥𝑥
𝑣𝑣 = 𝑢𝑢−1

𝑦𝑦 = 𝑥𝑥 � 𝑣𝑣

One solution:
• 𝑥𝑥𝑥 = 0.0001
• 𝑢𝑢′ = 0.000099999999833333343
• 𝑣𝑣′ = 10000.000016666666
• 𝑦𝑦′ = 1.0000000016666666

A solution with a violation within a tolerance of 10−6:
• 𝑥𝑥𝑥𝑥 = 0.0001
• 𝑢𝑢𝑢𝑢 = 0.000098999999833333343 𝑢𝑢𝑢𝑢 = sin 𝑥𝑥𝑥𝑥 − 10−6

• 𝑣𝑣𝑣𝑣 = 10101.010118015167
• 𝑦𝑦𝑦𝑦 = 1.0101010118015167

Violation of 10−6 in auxiliary constraint leads to violation of 10−2 in composite constraint

Nonlinear: Automatic Function Constraints

Automatic Functions
• Default for nonlinear constraints
• Gurobi generates piecewise terms
• Pass Nonlinear term
• Optionally pass precision information:

• FuncPieces, FuncPieceError,
FuncPieceLength, FuncPieceRatio

Advantages
• Solver works on a linear representation
• Faster solving

Disadvantages
• Problems can get quite large

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Nonlinear API’s in Gurobi

4. New MINLP Solver

5. Model Walkthrough

Nonlinear: New MINLP Solver in Gurobi

Solves Nonlinear, integer problems
• General, Nonlinear terms
• Finds global optimum
• Not using an approximation

Advantages
• Solves exact representation of the

problem
• Smaller problem size

Disadvantages
• Branching takes time

Using MINLP in Gurobi 11:
 Set FuncNonlinear model attribute:
 FuncNonlinear = 1
 means: “Use MINLP solver”

MINLP Solver – How It Works

Uses Branching
• Similar to branching in MIP
• Solving linear relaxations
• Create sub-problems
• Solve them all

Process:
1. Define lines that bound a curve
2. If lines are within tolerance, stop
3. If not, split the curve into two

curves with updated variable
bounds and try again

4. Keep going until all lines are
within tolerance.

Nonlinear: MINLP Branching

Sub-
problem 1

Sub-
problem 2

More Complex Curves

Derives hyperplane cuts
• To add to LP relaxation
• Adding more tangents at various points

improves the relaxation.
• Bound the solution space
• Iterative branching

• Refine the approximation
• Until difference < tolerance

Options
• Enable Nonlinear constraint:
• FuncNonlinear = 1
• Default: piecewise-linear approximation
• FuncNonlinear = -1

Tighter initial
bounds will speed
up performance!

Importance of Variable Bounds in MINLP

Tighter bounds = less branching
Tighten your variable bounds

Imagine the
difference
between lower
bound of l vs l’ –
much more
branching with l

Agenda

1. Applications for Nonlinear Solvers

2. Quadratic Solvers in Gurobi

3. Automatic Piecewise Constraints

4. New MINLP Solver

5. Model Walkthrough

Sample Model Part 1

 m = gp.Model()
 # Create variables
 x = m.addVar(lb=-1, ub=4, vtype=GRB.INTEGER, name="x")
 twox = m.addVar(lb=-2, ub=8, name="2x")
 sinx = m.addVar(lb=-1, ub=1, name="sinx")
 cos2x = m.addVar(lb=-1, ub=1, name="cos2x")
 expx = m.addVar(name="expx")
 # Set objective
 m.setObjective(sinx + cos2x, GRB.MINIMIZE)
 # Add constraints
 lc1 = m.addConstr(0.25 * expx - x <= 0)
 lc2 = m.addConstr(2.0 * x - twox == 0)
 # Add general function constraints
 # sinx = sin(x)
 gc1 = m.addGenConstrSin(x, sinx, "gc1")
 # cos2x = cos(twox)
 gc2 = m.addGenConstrCos(twox, cos2x, "gc2")
 # expx = exp(x)
 gc3 = m.addGenConstrExp(x, expx, "gc3")

minimize: sin 𝑥𝑥 + cos 2𝑥𝑥
 s.t.: 0.25 𝑒𝑒𝑥𝑥 − 𝑥𝑥 ≤ 0
 -1 <= x <= 4

Sample Model Part 2

 print("### Use Automatic PWL ...:")
 m_pwl, x_pwl = build_model()
 m_pwl.params.FuncNonlinear = 0 # (default)
 m_pwl.write("automatic_pwl.lp")
 m_pwl.optimize()
 printsol(m_pwl, x_pwl)
 m_pwl.dispose()
 print("### MINLP - Set FuncNonlinear=1:")
 m_minlp_1, x_minlp_1 = build_model()
 m_minlp_1.params.FuncNonlinear = 1
 m_minlp_1.write("minlp.lp")
 m_minlp_1.optimize()
 printsol(m_minlp_1, x_minlp_1)
 m_minlp_1.dispose()

Sample Models – Log Output

Using Automatic Piecewise Linear:
Gurobi Optimizer version 11.0.0 build v11.0.0rc2 …
Optimize a model with 2 rows, 5 columns and 4 nonzeros
Model fingerprint: 0x40e6a86e
Model has 3 general constraints
Variable types: 4 continuous, 1 integer (0 binary)
…
Presolve added 40 rows and 117 columns
Presolve time: 0.00s
Presolved: 42 rows, 122 columns, 1209 nonzeros
Variable types: 105 continuous, 17 integer (5 binary)
…
Optimal solution found (tolerance 1.00e-04)
x = 2.0
Obj = 1.256238552403841

Using MINLP Solver:
Set parameter FuncNonlinear to value 1
Gurobi Optimizer version 11.0.0 build v11.0.0rc2 …
Optimize a model with 2 rows, 5 columns and 4 nonzeros
Model fingerprint: 0x40e6a86e
Model has 3 general constraints
Variable types: 4 continuous, 1 integer (0 binary)
Presolve time: 0.00s
Presolved: 17 rows, 6 columns, 34 nonzeros
Presolved model has 3 nonlinear constraint(s)
Solving non-convex MINLP
Variable types: 4 continuous, 2 integer (0 binary)
…
x = 2.0
Obj = 1.2556538059620697

Sample Models – LP Saved From Presolve

LP files are identical

Write the presolved models to an LP file
presolved_model = model.presolve()
presolved_model.write(“presolved_model.lp”)

Compare presolved LP files
• Piecewise terms are linear

• Faster to solve
• Piecewise model is bigger

• Slower to solve

Conclusion
• Some models faster with piecewise
• Others faster with MINLP
• Please try both!

The Future for Gurobi MINLP

Gurobi 11 = first release of MINLP

Optimizations in future releases
• Retest with each new release!

API improvements too

Compare to Non-Convex MIQCP history
• Started with Gurobi 9.0
• Gurobi 11 > 80x faster

Non-Convex MIQCP

149

124

81

62

18

0

10

20

30

40

50

60

70

80

90

0

20

40

60

80

100

120

140

160

180

v9.0 v9.1 v9.5 v10.0 v11.0

Comparison of Gurobi Versions (PAR-10)

unsolved speed-up

During the Q&A session there were two important questions that were not answered live. Those
are documented here:

1. How does IIS work with nonlinear? Is there a way of displaying the model that is
equivalent to .lp format?

Gurobi’s computeIIS() API works with a MINLP model to create an Irreducible Inconsistent
Subsystem of constraints for an infeasible model.

You can write a MINLP model to an LP file – as demonstrated at the end of the webinar.

2. What happens if the variable bounds are unknown? Does Gurobi approximate them in the
presolve?

If you have a variable in a MINLP with an infinite bound such as the default: lower bound
of zero and upper bound of positive infinity, Gurobi will find the global optimum.

The model is bounded by a combination of constraints. So, the feasible region is bounded.
If it is not, Gurobi returns a result of “unbounded” – and there is no objective value.

Source Code Example:
#!/usr/bin/env python3.11
Copyright 2024, Gurobi Optimization, LLC
This example considers the following nonconvex nonlinear problem:
minimize sin(x) + cos(2*x) + 1
subject to 0.25*exp(x) - x <= 0
-1 <= x <= 4

We show you two approaches to solve it as a nonlinear model:

Set the paramter FuncNonlinear = 0 to handle all general function
constraints as pwl approximations. This is the default in v11.

Set the paramter FuncNonlinear = 1 to handle all general function
constraints as true nonlinear functions.

import gurobipy as gp
from gurobipy import GRB

def printsol(m, x):
 print(f"x = {x.X}")
 print(f"Obj = {m.ObjVal}")
def build_model():
 # Create a new model
 m = gp.Model()
 # Create variables
 x = m.addVar(lb=-1, ub=4, vtype=GRB.INTEGER, name="x")
 twox = m.addVar(lb=-2, ub=8, name="2x")
 sinx = m.addVar(lb=-1, ub=1, name="sinx")
 cos2x = m.addVar(lb=-1, ub=1, name="cos2x")
 expx = m.addVar(name="expx")
 # Set objective
 m.setObjective(sinx + cos2x + 1, GRB.MINIMIZE)
 # Add linear constraints
 lc1 = m.addConstr(0.25 * expx - x <= 0)
 lc2 = m.addConstr(2.0 * x - twox == 0)
 # Add general function constraints
 # sinx = sin(x)
 gc1 = m.addGenConstrSin(x, sinx, "gc1")
 # cos2x = cos(twox)
 gc2 = m.addGenConstrCos(twox, cos2x, "gc2")
 # expx = exp(x)
 gc3 = m.addGenConstrExp(x, expx, "gc3")
 return m, x

try:
 print("##")
 print("### Use Automatic Piecewise linear approximation:")
 m_pwl, x_pwl = build_model()
 m_pwl.params.FuncNonlinear = 0
 m_pwl.write("automatic_pwl.lp")
 m_pwl_presolve = m_pwl.presolve()
 m_pwl_presolve.write("m_pwl_presolve.lp")
 m_pwl.optimize()
 printsol(m_pwl, x_pwl)
 m_pwl.dispose()
 print("##")
 print("### MINLP - Set FuncNonlinear parameter on Model:")
 m_minlp_1, x_minlp_1 = build_model()
 m_minlp_1.params.FuncNonlinear = 1
 m_minlp_1.write("minlp.lp")
 m_minlp_presolve = m_minlp_1.presolve()
 m_minlp_presolve.write("m_minlp_presolve.lp")
 m_minlp_1.optimize()
 printsol(m_minlp_1, x_minlp_1)
 m_minlp_1.dispose()
 print("##")

except gp.GurobiError as e:
 print(f"Error code {e.errno}: {e}")

except AttributeError:
 print("Encountered an attribute error")

	Presentation
	Applications for Nonlinear Solvers

	Quadratic Solvers in Gurobi
	Nonlinear API’s in Gurobi
	New MINLP Solver
	Model Walkthrough

	Q&A
	Source Code Example:

