Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
callback.py
#!/usr/bin/env python3.7 # Copyright 2020, Gurobi Optimization, LLC # This example reads a model from a file, sets up a callback that # monitors optimization progress and implements a custom # termination strategy, and outputs progress information to the # screen and to a log file. # # The termination strategy implemented in this callback stops the # optimization of a MIP model once at least one of the following two # conditions have been satisfied: # 1) The optimality gap is less than 10% # 2) At least 10000 nodes have been explored, and an integer feasible # solution has been found. # Note that termination is normally handled through Gurobi parameters # (MIPGap, NodeLimit, etc.). You should only use a callback for # termination if the available parameters don't capture your desired # termination criterion. import sys import gurobipy as gp from gurobipy import GRB # Define my callback function def mycallback(model, where): if where == GRB.Callback.POLLING: # Ignore polling callback pass elif where == GRB.Callback.PRESOLVE: # Presolve callback cdels = model.cbGet(GRB.Callback.PRE_COLDEL) rdels = model.cbGet(GRB.Callback.PRE_ROWDEL) if cdels or rdels: print('%d columns and %d rows are removed' % (cdels, rdels)) elif where == GRB.Callback.SIMPLEX: # Simplex callback itcnt = model.cbGet(GRB.Callback.SPX_ITRCNT) if itcnt - model._lastiter >= 100: model._lastiter = itcnt obj = model.cbGet(GRB.Callback.SPX_OBJVAL) ispert = model.cbGet(GRB.Callback.SPX_ISPERT) pinf = model.cbGet(GRB.Callback.SPX_PRIMINF) dinf = model.cbGet(GRB.Callback.SPX_DUALINF) if ispert == 0: ch = ' ' elif ispert == 1: ch = 'S' else: ch = 'P' print('%d %g%s %g %g' % (int(itcnt), obj, ch, pinf, dinf)) elif where == GRB.Callback.MIP: # General MIP callback nodecnt = model.cbGet(GRB.Callback.MIP_NODCNT) objbst = model.cbGet(GRB.Callback.MIP_OBJBST) objbnd = model.cbGet(GRB.Callback.MIP_OBJBND) solcnt = model.cbGet(GRB.Callback.MIP_SOLCNT) if nodecnt - model._lastnode >= 100: model._lastnode = nodecnt actnodes = model.cbGet(GRB.Callback.MIP_NODLFT) itcnt = model.cbGet(GRB.Callback.MIP_ITRCNT) cutcnt = model.cbGet(GRB.Callback.MIP_CUTCNT) print('%d %d %d %g %g %d %d' % (nodecnt, actnodes, itcnt, objbst, objbnd, solcnt, cutcnt)) if abs(objbst - objbnd) < 0.1 * (1.0 + abs(objbst)): print('Stop early - 10% gap achieved') model.terminate() if nodecnt >= 10000 and solcnt: print('Stop early - 10000 nodes explored') model.terminate() elif where == GRB.Callback.MIPSOL: # MIP solution callback nodecnt = model.cbGet(GRB.Callback.MIPSOL_NODCNT) obj = model.cbGet(GRB.Callback.MIPSOL_OBJ) solcnt = model.cbGet(GRB.Callback.MIPSOL_SOLCNT) x = model.cbGetSolution(model._vars) print('**** New solution at node %d, obj %g, sol %d, ' 'x[0] = %g ****' % (nodecnt, obj, solcnt, x[0])) elif where == GRB.Callback.MIPNODE: # MIP node callback print('**** New node ****') if model.cbGet(GRB.Callback.MIPNODE_STATUS) == GRB.OPTIMAL: x = model.cbGetNodeRel(model._vars) model.cbSetSolution(model.getVars(), x) elif where == GRB.Callback.BARRIER: # Barrier callback itcnt = model.cbGet(GRB.Callback.BARRIER_ITRCNT) primobj = model.cbGet(GRB.Callback.BARRIER_PRIMOBJ) dualobj = model.cbGet(GRB.Callback.BARRIER_DUALOBJ) priminf = model.cbGet(GRB.Callback.BARRIER_PRIMINF) dualinf = model.cbGet(GRB.Callback.BARRIER_DUALINF) cmpl = model.cbGet(GRB.Callback.BARRIER_COMPL) print('%d %g %g %g %g %g' % (itcnt, primobj, dualobj, priminf, dualinf, cmpl)) elif where == GRB.Callback.MESSAGE: # Message callback msg = model.cbGet(GRB.Callback.MSG_STRING) model._logfile.write(msg) if len(sys.argv) < 2: print('Usage: callback.py filename') quit() # Turn off display and heuristics gp.setParam('OutputFlag', 0) gp.setParam('Heuristics', 0) # Read model from file model = gp.read(sys.argv[1]) # Open log file logfile = open('cb.log', 'w') # Pass data into my callback function model._lastiter = -GRB.INFINITY model._lastnode = -GRB.INFINITY model._logfile = logfile model._vars = model.getVars() # Solve model and capture solution information model.optimize(mycallback) print('') print('Optimization complete') if model.SolCount == 0: print('No solution found, optimization status = %d' % model.Status) else: print('Solution found, objective = %g' % model.ObjVal) for v in model.getVars(): if v.X != 0.0: print('%s %g' % (v.VarName, v.X)) # Close log file logfile.close()