Try our new documentation site (beta).


diet_c.c


/* Copyright 2020, Gurobi Optimization, LLC */

/* Solve the classic diet model, showing how to add constraints
   to an existing model. */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "gurobi_c.h"

int printSolution(GRBmodel* model, int nCategories, int nFoods);


int
main(int   argc,
     char *argv[])
{
  GRBenv   *env   = NULL;
  GRBmodel *model = NULL;
  int       error = 0;
  int       i, j;
  int      *cbeg, *cind, idx;
  double   *cval, *rhs;
  char     *sense;

  /* Nutrition guidelines, based on
     USDA Dietary Guidelines for Americans, 2005
     http://www.health.gov/DietaryGuidelines/dga2005/ */

  const int nCategories = 4;
  char *Categories[] =
    { "calories", "protein", "fat", "sodium" };
  double minNutrition[] = { 1800, 91, 0, 0 };
  double maxNutrition[] = { 2200, GRB_INFINITY, 65, 1779 };

  /* Set of foods */
  const int nFoods = 9;
  char* Foods[] =
    { "hamburger", "chicken", "hot dog", "fries",
      "macaroni", "pizza", "salad", "milk", "ice cream" };
  double cost[] =
    { 2.49, 2.89, 1.50, 1.89, 2.09, 1.99, 2.49, 0.89, 1.59 };

  /* Nutrition values for the foods */
  double nutritionValues[][4] = {
                                  { 410, 24, 26, 730 },
                                  { 420, 32, 10, 1190 },
                                  { 560, 20, 32, 1800 },
                                  { 380, 4, 19, 270 },
                                  { 320, 12, 10, 930 },
                                  { 320, 15, 12, 820 },
                                  { 320, 31, 12, 1230 },
                                  { 100, 8, 2.5, 125 },
                                  { 330, 8, 10, 180 }
                                };

  /* Create environment */
  error = GRBloadenv(&env, "diet.log");
  if (error) goto QUIT;

  /* Create initial model */
  error = GRBnewmodel(env, &model, "diet", nFoods + nCategories,
                      NULL, NULL, NULL, NULL, NULL);
  if (error) goto QUIT;

  /* Initialize decision variables for the foods to buy */
  for (j = 0; j < nFoods; ++j)
  {
    error = GRBsetdblattrelement(model, "Obj", j, cost[j]);
    if (error) goto QUIT;
    error = GRBsetstrattrelement(model, "VarName", j, Foods[j]);
    if (error) goto QUIT;
  }

  /* Initialize decision variables for the nutrition information,
     which we limit via bounds */
  for (j = 0; j < nCategories; ++j)
  {
    error = GRBsetdblattrelement(model, "LB", j + nFoods, minNutrition[j]);
    if (error) goto QUIT;
    error = GRBsetdblattrelement(model, "UB", j + nFoods, maxNutrition[j]);
    if (error) goto QUIT;
    error = GRBsetstrattrelement(model, "VarName", j + nFoods, Categories[j]);
    if (error) goto QUIT;
  }

  /* The objective is to minimize the costs */
  error = GRBsetintattr(model, "ModelSense", GRB_MINIMIZE);
  if (error) goto QUIT;

  /* Nutrition constraints */
  cbeg = malloc(sizeof(int) * nCategories);
  if (!cbeg) goto QUIT;
  cind = malloc(sizeof(int) * nCategories * (nFoods + 1));
  if (!cind) goto QUIT;
  cval = malloc(sizeof(double) * nCategories * (nFoods + 1));
  if (!cval) goto QUIT;
  rhs = malloc(sizeof(double) * nCategories);
  if (!rhs) goto QUIT;
  sense = malloc(sizeof(char) * nCategories);
  if (!sense) goto QUIT;
  idx = 0;
  for (i = 0; i < nCategories; ++i)
  {
    cbeg[i] = idx;
    rhs[i] = 0.0;
    sense[i] = GRB_EQUAL;
    for (j = 0; j < nFoods; ++j)
    {
      cind[idx] = j;
      cval[idx++] = nutritionValues[j][i];
    }
    cind[idx] = nFoods + i;
    cval[idx++] = -1.0;
  }

  error = GRBaddconstrs(model, nCategories, idx, cbeg, cind, cval, sense,
                        rhs, Categories);
  if (error) goto QUIT;

  /* Solve */
  error = GRBoptimize(model);
  if (error) goto QUIT;
  error = printSolution(model, nCategories, nFoods);
  if (error) goto QUIT;

  printf("\nAdding constraint: at most 6 servings of dairy\n");
  cind[0] = 7;
  cval[0] = 1.0;
  cind[1] = 8;
  cval[1] = 1.0;
  error = GRBaddconstr(model, 2, cind, cval, GRB_LESS_EQUAL, 6.0,
                       "limit_dairy");
  if (error) goto QUIT;

  /* Solve */
  error = GRBoptimize(model);
  if (error) goto QUIT;
  error = printSolution(model, nCategories, nFoods);
  if (error) goto QUIT;



QUIT:

  /* Error reporting */

  if (error)
  {
    printf("ERROR: %s\n", GRBgeterrormsg(env));
    exit(1);
  }

  /* Free data */

  free(cbeg);
  free(cind);
  free(cval);
  free(rhs);
  free(sense);

  /* Free model */

  GRBfreemodel(model);

  /* Free environment */

  GRBfreeenv(env);

  return 0;
}

int printSolution(GRBmodel* model, int nCategories, int nFoods)
{
  int error, status, i, j;
  double obj, x;
  char* vname;

  error = GRBgetintattr(model, "Status", &status);
  if (error) return error;
  if (status == GRB_OPTIMAL)
  {
    error = GRBgetdblattr(model, "ObjVal", &obj);
    if (error) return error;
    printf("\nCost: %f\n\nBuy:\n", obj);
    for (j = 0; j < nFoods; ++j)
    {
      error = GRBgetdblattrelement(model, "X", j, &x);
      if (error) return error;
      if (x > 0.0001)
      {
        error = GRBgetstrattrelement(model, "VarName", j, &vname);
        if (error) return error;
        printf("%s %f\n", vname, x);
      }
    }
    printf("\nNutrition:\n");
    for (i = 0; i < nCategories; ++i)
    {
      error = GRBgetdblattrelement(model, "X", i + nFoods, &x);
      if (error) return error;
      error = GRBgetstrattrelement(model, "VarName", i + nFoods, &vname);
      if (error) return error;
      printf("%s %f\n", vname, x);
    }
  }
  else
  {
    printf("No solution\n");
  }

  return 0;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization