Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
diet.m
function diet() % Copyright 2020, Gurobi Optimization, LLC % % Solve the classic diet model % Nutrition guidelines, based on % USDA Dietary Guidelines for Americans, 2005 % http://www.health.gov/DietaryGuidelines/dga2005/ ncategories = 4; categories = {'calories'; 'protein'; 'fat'; 'sodium'}; % minNutrition maxNutrition categorynutrition = [ 1800 2200; % calories 91 inf; % protein 0 65; % fat 0 1779]; % sodium nfoods = 9; foods = {'hamburger'; 'chicken'; 'hot dog'; 'fries'; 'macaroni'; 'pizza'; 'salad'; 'milk'; 'ice cream'}; foodcost = [2.49; % hamburger 2.89; % chicken 1.50; % hot dog 1.89; % fries 2.09; % macaroni 1.99; % pizza 2.49; % salad 0.89; % milk 1.59]; % ice cream % calories protein fat sodium nutritionValues = [ 410 24 26 730; % hamburger 420 32 10 1190; % chicken 560 20 32 1800; % hot dog 380 4 19 270; % fries 320 12 10 930; % macaroni 320 15 12 820; % pizza 320 31 12 1230; % salad 100 8 2.5 125; % milk 330 8 10 180]; % ice cream nutritionValues = sparse(nutritionValues); model.modelName = 'diet'; % The variables are layed out as [ buy; nutrition] model.obj = [ foodcost; zeros(ncategories, 1)]; model.lb = [ zeros(nfoods, 1); categorynutrition(:, 1)]; model.ub = [ inf(nfoods, 1); categorynutrition(:, 2)]; model.A = [ nutritionValues' -speye(ncategories)]; model.rhs = zeros(ncategories, 1); model.sense = repmat('=', ncategories, 1); function printSolution(result) if strcmp(result.status, 'OPTIMAL') buy = result.x(1:nfoods); nutrition = result.x(nfoods+1:nfoods+ncategories); fprintf('\nCost: %f\n', result.objval); fprintf('\nBuy:\n') for f=1:nfoods if buy(f) > 0.0001 fprintf('%10s %g\n', foods{f}, buy(f)); end end fprintf('\nNutrition:\n') for c=1:ncategories fprintf('%10s %g\n', categories{c}, nutrition(c)); end else fprintf('No solution\n'); end end % Solve results = gurobi(model); printSolution(results); fprintf('\nAdding constraint at most 6 servings of dairy\n') milk = find(strcmp('milk', foods)); icecream = find(strcmp('ice cream', foods)); model.A(end+1,:) = sparse([1; 1], [milk; icecream], 1, ... 1, nfoods + ncategories); model.rhs(end+1) = 6; model.sense(end+1) = '<'; % Solve results = gurobi(model); printSolution(results) end