Try our new documentation site (beta).


feasopt_c.c


/* Copyright 2020, Gurobi Optimization, LLC */

/* This example reads a MIP model from a file, adds artificial
   variables to each constraint, and then minimizes the sum of the
   artificial variables.  A solution with objective zero corresponds
   to a feasible solution to the input model.
   We can also use FeasRelax feature to do it. In this example, we
   use minrelax=1, i.e. optimizing the returned model finds a solution
   that minimizes the original objective, but only from among those
   solutions that minimize the sum of the artificial variables. */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "gurobi_c.h"

int
main(int   argc,
     char *argv[])
{
  GRBenv   *env       = NULL;
  GRBmodel *model     = NULL;
  GRBmodel *feasmodel = NULL;
  double   *rhspen      = NULL;
  int       error = 0;
  int       i, j;
  int       numvars, numconstrs;
  char      sense;
  int       vind[1];
  double    vval[1];
  double    feasobj;
  char      *cname, *vname;

  if (argc < 2)
  {
    fprintf(stderr, "Usage: feasopt_c filename\n");
    exit(1);
  }

  error = GRBloadenv(&env, "feasopt.log");
  if (error) goto QUIT;

  error = GRBreadmodel(env, argv[1], &model);
  if (error) goto QUIT;

  /* Create a copy to use FeasRelax feature later */

  feasmodel = GRBcopymodel(model);
  if (error) goto QUIT;

  /* clear objective */
  error = GRBgetintattr(model, "NumVars", &numvars);
  if (error) goto QUIT;
  for (j = 0; j < numvars; ++j)
  {
    error = GRBsetdblattrelement(model, "Obj", j, 0.0);
    if (error) goto QUIT;
  }

  /* add slack variables */
  error = GRBgetintattr(model, "NumConstrs", &numconstrs);
  if (error) goto QUIT;
  for (i = 0; i < numconstrs; ++i)
  {
    error = GRBgetcharattrelement(model, "Sense", i, &sense);
    if (error) goto QUIT;
    if (sense != '>')
    {
      error = GRBgetstrattrelement(model, "ConstrName", i, &cname);
      if (error) goto QUIT;
      vname = malloc(sizeof(char) * (6 + strlen(cname)));
      if (!vname) goto QUIT;
      strcpy(vname, "ArtN_");
      strcat(vname, cname);
      vind[0] = i;
      vval[0] = -1.0;
      error = GRBaddvar(model, 1, vind, vval, 1.0, 0.0, GRB_INFINITY,
                        GRB_CONTINUOUS, vname);
      if (error) goto QUIT;
      free(vname);
    }
    if (sense != '<')
    {
      error = GRBgetstrattrelement(model, "ConstrName", i, &cname);
      if (error) goto QUIT;
      vname = malloc(sizeof(char) * (6 + strlen(cname)));
      if (!vname) goto QUIT;
      strcpy(vname, "ArtP_");
      strcat(vname, cname);
      vind[0] = i;
      vval[0] = 1.0;
      error = GRBaddvar(model, 1, vind, vval, 1.0, 0.0, GRB_INFINITY,
                        GRB_CONTINUOUS, vname);
      if (error) goto QUIT;
      free(vname);
    }
  }

  /* Optimize modified model */

  error = GRBoptimize(model);
  if (error) goto QUIT;

  error = GRBwrite(model, "feasopt.lp");
  if (error) goto QUIT;

  /* Use FeasRelax feature */

  rhspen = (double *) malloc(numconstrs*sizeof(double));
  if (rhspen == NULL) {
    printf("ERROR: out of memory\n");
    goto QUIT;
  }

  /* set penalties for artificial variables */
  for (i = 0; i < numconstrs; i++) rhspen[i] = 1;

  /* create a FeasRelax model with the original objective recovered
     and enforcement on minimum of aretificial variables */
  error = GRBfeasrelax(feasmodel, GRB_FEASRELAX_LINEAR, 1,
                       NULL, NULL, rhspen, &feasobj);
  if (error) goto QUIT;

  /* optimize FeasRelax model */
  error = GRBwrite(feasmodel, "feasopt1.lp");
  if (error) goto QUIT;

  error = GRBoptimize(feasmodel);
  if (error) goto QUIT;


QUIT:

  /* Error reporting */

  if (error)
  {
    printf("ERROR: %s\n", GRBgeterrormsg(env));
    exit(1);
  }

  /* Free models, env and etc. */

  if (rhspen) free(rhspen);

  GRBfreemodel(model);
  GRBfreemodel(feasmodel);

  GRBfreeenv(env);

  return 0;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization