Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
feasopt.m
function feasopt(filename) % % Copyright 2020, Gurobi Optimization, LLC % % This example reads a MIP model from a file, adds artificial % variables to each constraint, and then minimizes the sum of the % artificial variables. A solution with objective zero corresponds % to a feasible solution to the input model. % We can also use FeasRelax feature to do it. In this example, we % use minrelax=1, i.e. optimizing the returned model finds a solution % that minimizes the original objective, but only from among those % solutions that minimize the sum of the artificial variables. % Read model fprintf('Reading model %s\n', filename); model = gurobi_read(filename); params.logfile = 'feasopt.log'; result1 = gurobi(model, params); [rows, cols] = size(model.A); % Create penalties, only linear constraints are allowed to be relaxed penalties.rhs = ones(rows, 1); result = gurobi_feasrelax(model, 0, true, penalties, params); gurobi_write(result.model, 'feasopt1.lp'); % clear objective model.obj = zeros(cols, 1); nvar = cols; for c = 1:rows if model.sense(c) ~= '>' nvar = nvar + 1; model.A(c, nvar) = -1; model.obj(nvar) = 1; model.vtype(nvar) = 'C'; model.varnames(nvar) = strcat('ArtN_', model.constrnames(c)); model.lb(nvar) = 0; model.ub(nvar) = inf; end if model.sense(c) ~= '<' nvar = nvar + 1; model.A(c, nvar) = 1; model.obj(nvar) = 1; model.vtype(nvar) = 'C'; model.varnames(nvar) = strcat('ArtP_', model.constrnames(c)); model.lb(nvar) = 0; model.ub(nvar) = inf; end end gurobi_write(model, 'feasopt2.lp'); result2 = gurobi(model, params); end