Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
gc_pwl_func.py
#!/usr/bin/env python3.7 # Copyright 2020, Gurobi Optimization, LLC # This example considers the following nonconvex nonlinear problem # # maximize 2 x + y # subject to exp(x) + 4 sqrt(y) <= 9 # x, y >= 0 # # We show you two approaches to solve this: # # 1) Use a piecewise-linear approach to handle general function # constraints (such as exp and sqrt). # a) Add two variables # u = exp(x) # v = sqrt(y) # b) Compute points (x, u) of u = exp(x) for some step length (e.g., x # = 0, 1e-3, 2e-3, ..., xmax) and points (y, v) of v = sqrt(y) for # some step length (e.g., y = 0, 1e-3, 2e-3, ..., ymax). We need to # compute xmax and ymax (which is easy for this example, but this # does not hold in general). # c) Use the points to add two general constraints of type # piecewise-linear. # # 2) Use the Gurobis built-in general function constraints directly (EXP # and POW). Here, we do not need to compute the points and the maximal # possible values, which will be done internally by Gurobi. In this # approach, we show how to "zoom in" on the optimal solution and # tighten tolerances to improve the solution quality. # import math import gurobipy as gp from gurobipy import GRB def printsol(m, x, y, u, v): print('x = ' + str(x.x) + ', u = ' + str(u.x)) print('y = ' + str(y.x) + ', v = ' + str(v.x)) print('Obj = ' + str(m.objVal)) # Calculate violation of exp(x) + 4 sqrt(y) <= 9 vio = math.exp(x.x) + 4 * math.sqrt(y.x) - 9 if vio < 0: vio = 0 print('Vio = ' + str(vio)) try: # Create a new model m = gp.Model() # Create variables x = m.addVar(name='x') y = m.addVar(name='y') u = m.addVar(name='u') v = m.addVar(name='v') # Set objective m.setObjective(2*x + y, GRB.MAXIMIZE) # Add constraints lc = m.addConstr(u + 4*v <= 9) # Approach 1) PWL constraint approach xpts = [] ypts = [] upts = [] vpts = [] intv = 1e-3 xmax = math.log(9) t = 0.0 while t < xmax + intv: xpts.append(t) upts.append(math.exp(t)) t += intv ymax = (9.0/4)*(9.0/4) t = 0.0 while t < ymax + intv: ypts.append(t) vpts.append(math.sqrt(t)) t += intv gc1 = m.addGenConstrPWL(x, u, xpts, upts, "gc1") gc2 = m.addGenConstrPWL(y, v, ypts, vpts, "gc2") # Optimize the model m.optimize() printsol(m, x, y, u, v) # Approach 2) General function constraint approach with auto PWL # translation by Gurobi # restore unsolved state and get rid of PWL constraints m.reset() m.remove(gc1) m.remove(gc2) m.update() # u = exp(x) gcf1 = m.addGenConstrExp(x, u, name="gcf1") # v = x^(0.5) gcf2 = m.addGenConstrPow(y, v, 0.5, name="gcf2") # Use the equal piece length approach with the length = 1e-3 m.params.FuncPieces = 1 m.params.FuncPieceLength = 1e-3 # Optimize the model m.optimize() printsol(m, x, y, u, v) # Zoom in, use optimal solution to reduce the ranges and use a smaller # pclen=1-5 to solve it x.lb = max(x.lb, x.x-0.01) x.ub = min(x.ub, x.x+0.01) y.lb = max(y.lb, y.x-0.01) y.ub = min(y.ub, y.x+0.01) m.update() m.reset() m.params.FuncPieceLength = 1e-5 # Optimize the model m.optimize() printsol(m, x, y, u, v) except gp.GurobiError as e: print('Error code ' + str(e.errno) + ": " + str(e)) except AttributeError: print('Encountered an attribute error')