Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
genconstr.R
# Copyright 2020, Gurobi Optimization, LLC # # In this example we show the use of general constraints for modeling # some common expressions. We use as an example a SAT-problem where we # want to see if it is possible to satisfy at least four (or all) clauses # of the logical for # # L = (x0 or ~x1 or x2) and (x1 or ~x2 or x3) and # (x2 or ~x3 or x0) and (x3 or ~x0 or x1) and # (~x0 or ~x1 or x2) and (~x1 or ~x2 or x3) and # (~x2 or ~x3 or x0) and (~x3 or ~x0 or x1) # # We do this by introducing two variables for each literal (itself and its # negated value), a variable for each clause, and then two # variables for indicating if we can satisfy four, and another to identify # the minimum of the clauses (so if it one, we can satisfy all clauses) # and put these two variables in the objective. # i.e. the Objective function will be # # maximize Obj0 + Obj1 # # Obj0 = MIN(Clause1, ... , Clause8) # Obj1 = 1 -> Clause1 + ... + Clause8 >= 4 # # thus, the objective value will be two if and only if we can satisfy all # clauses; one if and only if at least four clauses can be satisfied, and # zero otherwise. # library(Matrix) library(gurobi) # Set-up environment env <- list() env$logfile <- 'genconstr.log' # define primitive data nLiterals <- 4 nClauses <- 8 nObj <- 2 nVars <- 2 * nLiterals + nClauses + nObj Literal <- function(n) {n} NotLit <- function(n) {n + nLiterals} Clause <- function(n) {2 * nLiterals + n} Obj <- function(n) {2 * nLiterals + nClauses + n} Clauses <- list(c(Literal(1), NotLit(2), Literal(3)), c(Literal(2), NotLit(3), Literal(4)), c(Literal(3), NotLit(4), Literal(1)), c(Literal(4), NotLit(1), Literal(2)), c(NotLit(1), NotLit(2), Literal(3)), c(NotLit(2), NotLit(3), Literal(4)), c(NotLit(3), NotLit(4), Literal(1)), c(NotLit(4), NotLit(1), Literal(2))) # Create model model <- list() model$modelname <- 'genconstr' model$modelsense <- 'max' # Create objective function, variable names, and variable types model$vtype <- rep('B',nVars) model$ub <- rep(1, nVars) model$varnames <- c(sprintf('X%d', seq(1,nLiterals)), sprintf('notX%d', seq(1,nLiterals)), sprintf('Clause%d', seq(1,nClauses)), sprintf('Obj%d', seq(1,nObj))) model$obj <- c(rep(0, 2*nLiterals + nClauses), rep(1, nObj)) # Create linear constraints linking literals and not literals model$A <- spMatrix(nLiterals, nVars, i = c(seq(1,nLiterals), seq(1,nLiterals)), j = c(seq(1,nLiterals), seq(1+nLiterals,2*nLiterals)), x = rep(1,2*nLiterals)) model$constrnames <- c(sprintf('CNSTR_X%d',seq(1,nLiterals))) model$rhs <- rep(1, nLiterals) model$sense <- rep('=', nLiterals) # Create OR general constraints linking clauses and literals model$genconor <- lapply(1:nClauses, function(i) list(resvar=Clause(i), vars = Clauses[[i]], name = sprintf('CNSTR_Clause%d',i))) # Set-up Obj1 = Min(Clause[1:nClauses]) model$genconmin <- list(list(resvar = Obj(1), vars = c(seq(Clause(1),Clause(nClauses))), name = 'CNSTR_Obj1')) # the indicator constraint excepts the following vector types for the # linear sum: # # - a dense vector, for example # c(rep(0, 2*nLiterals), rep(1, nClauses), rep(0,nObj)) # - a sparse vector, for example # sparseVector( x = rep(1,nClauses), i = (2*nLiterals+1):(2*nLiterals+nClauses), length=nVars) # - In case all coefficients are the same, you can pass a vector of length # one with the corresponding value which gets expanded to a dense vector # with all values being the given one # # We use a sparse vector in this example a <- sparseVector( x = rep(1,nClauses), i = (2*nLiterals+1):(2*nLiterals+nClauses), length=nVars) # Set-up Obj2 to signal if any clause is satisfied, i.e. # we use an indicator constraint of the form: # (Obj2 = 1) -> sum(Clause[1:nClauses]) >= 4 model$genconind <- list(list(binvar = Obj(2), binval = 1, a = a, sense = '>', rhs = 4, name = 'CNSTR_Obj2')) # Save model gurobi_write(model, 'genconstr.lp', env) # Optimize result <- gurobi(model, env = env) # Check optimization status if (result$status == 'OPTIMAL') { if (result$objval > 1.9) { cat('Logical expression is satisfiable\n') } else if(result$objval > 0.9) { cat('At least four clauses are satisfiable\n') } else { cat('At most three clauses may be satisfiable\n') } } else { cat('Optimization falied\n') } # Clear space rm(model,result,env,Clauses)