Try our new documentation site (beta).


lpmod.m


function lpmod(filename)

% Copyright 2020, Gurobi Optimization, LLC
%
% This example reads an LP model from a file and solves it.
% If the model can be solved, then it finds the smallest positive variable,
% sets its upper bound to zero, and resolves the model two ways:
% first with an advanced start, then without an advanced start
% (i.e. 'from scratch').

% Read model
fprintf('Reading model %s\n', filename);

model = gurobi_read(filename);

if (isfield(model, 'multiobj')  && ~isempty(model.multiobj))  || ...
   (isfield(model, 'sos')       && ~isempty(model.sos))       || ...
   (isfield(model, 'pwlobj')    && ~isempty(model.pwlobj))    || ...
   (isfield(model, 'quadcon')   && ~isempty(model.quadcon))   || ...
   (isfield(model, 'genconstr') && ~isempty(model.genconstr)) || ...
    isfield(model, 'Q')
    fprintf('The model is not a linear program, quit\n');
    return;
end

ivars = find(model.vtype ~= 'C');
ints = length(ivars);

if ints > 0
    fprintf('problem is a MIP, quit\n');
    return;
end

result = gurobi(model);
if ~strcmp(result.status, 'OPTIMAL')
    fprintf('This model cannot be solved because its optimization status is %s\n', result.status);
    return;
end

cols = size(model.A,2);

% create lb if they do not exists, and set them to default values
if ~isfield(model, 'lb') || isempty(model.lb)
    model.lb = zeros(cols, 1);
end

% Find the smallest variable value
minVal = inf;
minVar = -1;
for j = 1:cols
    if result.x(j) > 0.0001 && result.x(j) < minVal && model.lb(j) == 0.0
        minVal = result.x(j);
        minVar = j;
    end
end

fprintf('\n*** Setting %s from %d to zero ***\n', model.varnames{minVar}, minVar);
model.ub(minVar) = 0;

model.vbasis = result.vbasis;
model.cbasis = result.cbasis;

% Solve from this starting point
result = gurobi(model);

% Save iteration & time info
warmCount = result.itercount;
warmTime = result.runtime;

% Remove warm start basis and resolve
model = rmfield(model, 'vbasis');
model = rmfield(model, 'cbasis');
result = gurobi(model);

coldCount = result.itercount;
coldTime = result.runtime;

fprintf('\n');
fprintf('*** Warm start: %g iterations, %g seconds\n', warmCount, warmTime);
fprintf('*** Cold start: %g iterations, %g seconds\n', coldCount, coldTime);

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization