Try our new documentation site (beta).


multiscenario_c++.cpp


// Copyright 2020, Gurobi Optimization, LLC

// Facility location: a company currently ships its product from 5 plants
// to 4 warehouses. It is considering closing some plants to reduce
// costs. What plant(s) should the company close, in order to minimize
// transportation and fixed costs?
//
// Since the plant fixed costs and the warehouse demands are uncertain, a
// scenario approach is chosen.
//
// Note that this example is similar to the facility_c++.cpp example. Here
// we added scenarios in order to illustrate the multi-scenario feature.
//
// Based on an example from Frontline Systems:
// http://www.solver.com/disfacility.htm
// Used with permission.

#include "gurobi_c++.h"
#include <sstream>
#include <iomanip>
using namespace std;

int
main(int   argc,
     char *argv[])
{
  GRBEnv     *env          = 0;
  GRBVar     *open         = 0;
  GRBVar    **transport    = 0;
  GRBConstr  *demandConstr = 0;

  int transportCt = 0;

  try {
    // Number of plants and warehouses
    const int nPlants = 5;
    const int nWarehouses = 4;

    // Warehouse demand in thousands of units
    double Demand[] = { 15, 18, 14, 20 };

    // Plant capacity in thousands of units
    double Capacity[] = { 20, 22, 17, 19, 18 };

    // Fixed costs for each plant
    double FixedCosts[] =
      { 12000, 15000, 17000, 13000, 16000 };

    // Transportation costs per thousand units
    double TransCosts[][nPlants] = {
      { 4000, 2000, 3000, 2500, 4500 },
      { 2500, 2600, 3400, 3000, 4000 },
      { 1200, 1800, 2600, 4100, 3000 },
      { 2200, 2600, 3100, 3700, 3200 }
    };

    double maxFixed = -GRB_INFINITY;
    double minFixed = GRB_INFINITY;

    int p;
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] > maxFixed)
        maxFixed = FixedCosts[p];

      if (FixedCosts[p] < minFixed)
        minFixed = FixedCosts[p];
    }

    // Model
    env = new GRBEnv();
    GRBModel model = GRBModel(*env);
    model.set(GRB_StringAttr_ModelName, "multiscenario");

    // Plant open decision variables: open[p] == 1 if plant p is open.
    open = model.addVars(nPlants, GRB_BINARY);

    for (p = 0; p < nPlants; p++) {
      ostringstream vname;
      vname << "Open" << p;
      open[p].set(GRB_DoubleAttr_Obj, FixedCosts[p]);
      open[p].set(GRB_StringAttr_VarName, vname.str());
    }

    // Transportation decision variables: how much to transport from
    // a plant p to a warehouse w
    transport = new GRBVar* [nWarehouses];
    int w;
    for (w = 0; w < nWarehouses; w++) {
      transport[w] = model.addVars(nPlants);
      transportCt++;

      for (p = 0; p < nPlants; p++) {
        ostringstream vname;
        vname << "Trans" << p << "." << w;
        transport[w][p].set(GRB_DoubleAttr_Obj, TransCosts[w][p]);
        transport[w][p].set(GRB_StringAttr_VarName, vname.str());
      }
    }

    // The objective is to minimize the total fixed and variable costs
    model.set(GRB_IntAttr_ModelSense, GRB_MINIMIZE);

    // Production constraints
    // Note that the right-hand limit sets the production to zero if
    // the plant is closed
    for (p = 0; p < nPlants; p++) {
      GRBLinExpr ptot = 0;
      for (w = 0; w < nWarehouses; w++) {
        ptot += transport[w][p];
      }
      ostringstream cname;
      cname << "Capacity" << p;
      model.addConstr(ptot <= Capacity[p] * open[p], cname.str());
    }

    // Demand constraints
    demandConstr = new GRBConstr[nWarehouses];
    for (w = 0; w < nWarehouses; w++) {
      GRBLinExpr dtot = 0;
      for (p = 0; p < nPlants; p++)
        dtot += transport[w][p];

      ostringstream cname;
      cname << "Demand" << w;
      demandConstr[w] = model.addConstr(dtot == Demand[w], cname.str());
    }

    // We constructed the base model, now we add 7 scenarios
    //
    // Scenario 0: Represents the base model, hence, no manipulations.
    // Scenario 1: Manipulate the warehouses demands slightly (constraint right
    //             hand sides).
    // Scenario 2: Double the warehouses demands (constraint right hand sides).
    // Scenario 3: Manipulate the plant fixed costs (objective coefficients).
    // Scenario 4: Manipulate the warehouses demands and fixed costs.
    // Scenario 5: Force the plant with the largest fixed cost to stay open
    //             (variable bounds).
    // Scenario 6: Force the plant with the smallest fixed cost to be closed
    //             (variable bounds).

    model.set(GRB_IntAttr_NumScenarios, 7);

    // Scenario 0: Base model, hence, nothing to do except giving the
    //             scenario a name
    model.set(GRB_IntParam_ScenarioNumber, 0);
    model.set(GRB_StringAttr_ScenNName, "Base model");

    // Scenario 1: Increase the warehouse demands by 10%
    model.set(GRB_IntParam_ScenarioNumber, 1);
    model.set(GRB_StringAttr_ScenNName, "Increased warehouse demands");

    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 1.1);
    }

    // Scenario 2: Double the warehouse demands
    model.set(GRB_IntParam_ScenarioNumber, 2);
    model.set(GRB_StringAttr_ScenNName, "Double the warehouse demands");

    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 2.0);
    }

    // Scenario 3: Decrease the plant fixed costs by 5%
    model.set(GRB_IntParam_ScenarioNumber, 3);
    model.set(GRB_StringAttr_ScenNName, "Decreased plant fixed costs");

    for (p = 0; p < nPlants; p++) {
      open[p].set(GRB_DoubleAttr_ScenNObj, FixedCosts[p] * 0.95);
    }

    // Scenario 4: Combine scenario 1 and scenario 3 */
    model.set(GRB_IntParam_ScenarioNumber, 4);
    model.set(GRB_StringAttr_ScenNName, "Increased warehouse demands and decreased plant fixed costs");

    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 1.1);
    }
    for (p = 0; p < nPlants; p++) {
      open[p].set(GRB_DoubleAttr_ScenNObj, FixedCosts[p] * 0.95);
    }

    // Scenario 5: Force the plant with the largest fixed cost to stay
    //             open
    model.set(GRB_IntParam_ScenarioNumber, 5);
    model.set(GRB_StringAttr_ScenNName, "Force plant with largest fixed cost to stay open");

    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == maxFixed) {
        open[p].set(GRB_DoubleAttr_ScenNLB, 1.0);
        break;
      }
    }

    // Scenario 6: Force the plant with the smallest fixed cost to be
    //             closed
    model.set(GRB_IntParam_ScenarioNumber, 6);
    model.set(GRB_StringAttr_ScenNName, "Force plant with smallest fixed cost to be closed");

    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == minFixed) {
        open[p].set(GRB_DoubleAttr_ScenNUB, 0.0);
        break;
      }
    }

    // Guess at the starting point: close the plant with the highest
    // fixed costs; open all others

    // First, open all plants
    for (p = 0; p < nPlants; p++)
      open[p].set(GRB_DoubleAttr_Start, 1.0);

    // Now close the plant with the highest fixed cost
    cout << "Initial guess:" << endl;
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == maxFixed) {
        open[p].set(GRB_DoubleAttr_Start, 0.0);
        cout << "Closing plant " << p << endl << endl;
        break;
      }
    }

    // Use barrier to solve root relaxation
    model.set(GRB_IntParam_Method, GRB_METHOD_BARRIER);

    // Solve multi-scenario model
    model.optimize();

    int nScenarios = model.get(GRB_IntAttr_NumScenarios);

    // Print solution for each */
    for (int s = 0; s < nScenarios; s++) {
      int modelSense = GRB_MINIMIZE;

      // Set the scenario number to query the information for this scenario
      model.set(GRB_IntParam_ScenarioNumber, s);

      // collect result for the scenario
      double scenNObjBound = model.get(GRB_DoubleAttr_ScenNObjBound);
      double scenNObjVal = model.get(GRB_DoubleAttr_ScenNObjVal);

      cout << endl << endl << "------ Scenario " << s
           << " (" << model.get(GRB_StringAttr_ScenNName) << ")" << endl;

      // Check if we found a feasible solution for this scenario
      if (scenNObjVal >= modelSense * GRB_INFINITY)
        if (scenNObjBound >= modelSense * GRB_INFINITY)
          // Scenario was proven to be infeasible
          cout << endl << "INFEASIBLE" << endl;
        else
          // We did not find any feasible solution - should not happen in
          // this case, because we did not set any limit (like a time
          // limit) on the optimization process
          cout << endl << "NO SOLUTION" << endl;
      else {
        cout << endl << "TOTAL COSTS: " << scenNObjVal << endl;
        cout << "SOLUTION:" << endl;
        for (p = 0; p < nPlants; p++) {
          double scenNX = open[p].get(GRB_DoubleAttr_ScenNX);

          if (scenNX > 0.5) {
            cout << "Plant " << p << " open" << endl;
            for (w = 0; w < nWarehouses; w++) {
              scenNX = transport[w][p].get(GRB_DoubleAttr_ScenNX);

              if (scenNX > 0.0001)
                cout << "  Transport " << scenNX
                     << " units to warehouse " << w << endl;
            }
          } else
            cout << "Plant " << p << " closed!" << endl;
        }
      }
    }

    // Print a summary table: for each scenario we add a single summary
    // line
    cout << endl << endl << "Summary: Closed plants depending on scenario" << endl << endl;
    cout << setw(8) << " " << " | " << setw(17) << "Plant" << setw(14) << "|" << endl;

    cout << setw(8) << "Scenario" << " |";
    for (p = 0; p < nPlants; p++)
      cout << " " << setw(5) << p;
    cout << " | " << setw(6) << "Costs" << "  Name" << endl;

    for (int s = 0; s < nScenarios; s++) {
      int modelSense = GRB_MINIMIZE;

      // Set the scenario number to query the information for this scenario
      model.set(GRB_IntParam_ScenarioNumber, s);

      // Collect result for the scenario
      double scenNObjBound = model.get(GRB_DoubleAttr_ScenNObjBound);
      double scenNObjVal = model.get(GRB_DoubleAttr_ScenNObjVal);

      cout << left << setw(8) << s << right << " |";

      // Check if we found a feasible solution for this scenario
      if (scenNObjVal >= modelSense * GRB_INFINITY) {
        if (scenNObjBound >= modelSense * GRB_INFINITY)
          // Scenario was proven to be infeasible
          cout << " " << left << setw(30) << "infeasible" << right;
        else
          // We did not find any feasible solution - should not happen in
          // this case, because we did not set any limit (like a time
          // limit) on the optimization process
          cout << " " << left << setw(30) << "no solution found" << right;

        cout << "| " << setw(6) << "-"
             << "  " << model.get(GRB_StringAttr_ScenNName)
             << endl;
      } else {
        for (p = 0; p < nPlants; p++) {
          double scenNX = open[p].get(GRB_DoubleAttr_ScenNX);
          if (scenNX  > 0.5)
            cout << setw(6) << " ";
          else
            cout << " " << setw(5) << "x";
        }

        cout << " | " << setw(6) << scenNObjVal
             << "  " << model.get(GRB_StringAttr_ScenNName)
             << endl;
      }
    }
  }
  catch (GRBException e) {
    cout << "Error code = " << e.getErrorCode() << endl;
    cout << e.getMessage() << endl;
  }
  catch (...) {
    cout << "Exception during optimization" << endl;
  }

  delete[] open;
  for (int i = 0; i < transportCt; ++i) {
    delete[] transport[i];
  }
  delete[] transport;
  delete[] demandConstr;
  delete env;
  return 0;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization