Try our new documentation site (beta).


poolsearch_c.c


/* Copyright 2020, Gurobi Optimization, LLC */

/* We find alternative epsilon-optimal solutions to a given knapsack
 * problem by using PoolSearchMode */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "gurobi_c.h"

#define MAXSTR 128


int main(void)
{
  GRBenv   *env   = NULL;
  GRBenv   *menv  = NULL;
  GRBmodel *model = NULL;
  int       error = 0;
  char      buffer[MAXSTR];
  int e, status, nSolutions, prlen;
  double objval, *cval = NULL;
  int *cind = NULL;

  /* Sample data */
  const int groundSetSize = 10;
  double objCoef[10] =
    {32, 32, 15, 15, 6, 6, 1, 1, 1, 1};
  double knapsackCoef[10] =
    {16, 16,  8,  8, 4, 4, 2, 2, 1, 1};
  double Budget = 33;

  /* Create environment */
  error = GRBloadenv(&env, "poolsearch_c.log");
  if (error) goto QUIT;

  /* Create initial model */
  error = GRBnewmodel(env, &model, "poolsearch_c", groundSetSize, NULL,
                      NULL, NULL, NULL, NULL);
  if (error) goto QUIT;

  /* get model environment */
  menv = GRBgetenv(model);
  if (!menv) {
    fprintf(stderr, "Error: could not get model environment\n");
    goto QUIT;
  }

  /* set objective function */
  error = GRBsetdblattrarray(model, "Obj", 0, groundSetSize, objCoef);
  if (error) goto QUIT;

  /* set variable types and names */
  for (e = 0; e < groundSetSize; e++) {
    sprintf(buffer, "El%d", e);
    error = GRBsetcharattrelement(model, "VType", e, GRB_BINARY);
    if (error) goto QUIT;

    error = GRBsetstrattrelement(model, "VarName", e, buffer);
    if (error) goto QUIT;
  }

  /* Make space for constraint data */
  cind = malloc(sizeof(int) * groundSetSize);
  if (!cind) goto QUIT;
  for (e = 0; e < groundSetSize; e++)
    cind[e] = e;

  /* Constraint: limit total number of elements to be picked to be at most
   * Budget */
  sprintf (buffer, "Budget");
  error = GRBaddconstr(model, groundSetSize, cind, knapsackCoef,
                       GRB_LESS_EQUAL, Budget, buffer);
  if (error) goto QUIT;

  /* set global sense for ALL objectives */
  error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
  if (error) goto QUIT;

  /* Limit how many solutions to collect */
  error = GRBsetintparam(menv, GRB_INT_PAR_POOLSOLUTIONS, 1024);
  if (error) goto QUIT;

  /* Limit the search space by setting a gap for the worst possible solution that will be accepted */
  error = GRBsetdblparam(menv, GRB_DBL_PAR_POOLGAP, 0.10);
  if (error) goto QUIT;

  /* do a systematic search for the k-best solutions */
  error = GRBsetintparam(menv, GRB_INT_PAR_POOLSEARCHMODE, 2);
  if (error) goto QUIT;

  /* save problem */
  error = GRBwrite(model, "poolsearch_c.lp");
  if (error) goto QUIT;
  error = GRBwrite(model, "poolsearch_c.mps");
  if (error) goto QUIT;

  /* Optimize */
  error = GRBoptimize(model);
  if (error) goto QUIT;

  /* Status checking */
  error = GRBgetintattr(model, "Status", &status);
  if (error) goto QUIT;

  if (status == GRB_INF_OR_UNBD ||
      status == GRB_INFEASIBLE  ||
      status == GRB_UNBOUNDED     ) {
    printf("The model cannot be solved "
           "because it is infeasible or unbounded\n");
    goto QUIT;
  }
  if (status != GRB_OPTIMAL) {
    printf("Optimization was stopped with status %d\n", status);
    goto QUIT;
  }

  /* make space for optimal solution */
  cval = malloc(sizeof(double) * groundSetSize);
  if (!cval) goto QUIT;

  /* Print best selected set */
  error = GRBgetdblattrarray(model, GRB_DBL_ATTR_X, 0, groundSetSize, cval);
  if (error) goto QUIT;

  printf("Selected elements in best solution:\n\t");
  for (e = 0; e < groundSetSize; e++) {
    if (cval[e] < .9) continue;
    printf("El%d ", e);
  }

  /* print number of solutions stored */
  error = GRBgetintattr(model, GRB_INT_ATTR_SOLCOUNT, &nSolutions);
  if (error) goto QUIT;
  printf("\nNumber of solutions found: %d\nValues:", nSolutions);

  /* print objective values of alternative solutions */
  prlen = 0;
  for (e = 0; e < nSolutions; e++) {
    error = GRBsetintparam(menv, GRB_INT_PAR_SOLUTIONNUMBER, e);
    if (error) goto QUIT;

    error = GRBgetdblattr(model, GRB_DBL_ATTR_POOLOBJVAL, &objval);
    if (error) goto QUIT;

    prlen += printf(" %g", objval);
    if (prlen >= 75 && e+1 < nSolutions) {
      prlen = printf("\n    ");
    }
  }
  printf("\n");

  /* print fourth best set if available */
  if (nSolutions >= 4) {
    error = GRBsetintparam(menv, GRB_INT_PAR_SOLUTIONNUMBER, 3);
    if (error) goto QUIT;

    /* get the solution vector */
    error = GRBgetdblattrarray(model, GRB_DBL_ATTR_XN, 0, groundSetSize, cval);
    if (error) goto QUIT;

    printf("Selected elements in fourth best solution:\n\t");
    for (e = 0; e < groundSetSize; e++) {
      if (cval[e] < .9) continue;
      printf("El%d ", e);
    }
    printf("\n");
  }

QUIT:
  if (model != NULL) GRBfreemodel(model);
  if (env != NULL)   GRBfreeenv(env);
  if (cind != NULL)  free(cind);
  if (cval != NULL)  free(cval);
  return error;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization