Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
poolsearch_c++.cpp
/* Copyright 2020, Gurobi Optimization, LLC */ /* We find alternative epsilon-optimal solutions to a given knapsack * problem by using PoolSearchMode */ #include "gurobi_c++.h" #include <sstream> #include <iomanip> using namespace std; int main(void) { GRBEnv *env = 0; GRBVar *Elem = 0; int e, status, nSolutions; try { // Sample data const int groundSetSize = 10; double objCoef[10] = {32, 32, 15, 15, 6, 6, 1, 1, 1, 1}; double knapsackCoef[10] = {16, 16, 8, 8, 4, 4, 2, 2, 1, 1}; double Budget = 33; // Create environment env = new GRBEnv("poolsearch_c++.log"); // Create initial model GRBModel model = GRBModel(*env); model.set(GRB_StringAttr_ModelName, "poolsearch_c++"); // Initialize decision variables for ground set: // x[e] == 1 if element e is chosen Elem = model.addVars(groundSetSize, GRB_BINARY); model.set(GRB_DoubleAttr_Obj, Elem, objCoef, groundSetSize); for (e = 0; e < groundSetSize; e++) { ostringstream vname; vname << "El" << e; Elem[e].set(GRB_StringAttr_VarName, vname.str()); } // Constraint: limit total number of elements to be picked to be at most // Budget GRBLinExpr lhs; lhs = 0; for (e = 0; e < groundSetSize; e++) { lhs += Elem[e] * knapsackCoef[e]; } model.addConstr(lhs <= Budget, "Budget"); // set global sense for ALL objectives model.set(GRB_IntAttr_ModelSense, GRB_MAXIMIZE); // Limit how many solutions to collect model.set(GRB_IntParam_PoolSolutions, 1024); // Limit the search space by setting a gap for the worst possible solution that will be accepted model.set(GRB_DoubleParam_PoolGap, 0.10); // do a systematic search for the k-best solutions model.set(GRB_IntParam_PoolSearchMode, 2); // save problem model.write("poolsearch_c++.lp"); // Optimize model.optimize(); // Status checking status = model.get(GRB_IntAttr_Status); if (status == GRB_INF_OR_UNBD || status == GRB_INFEASIBLE || status == GRB_UNBOUNDED ) { cout << "The model cannot be solved " << "because it is infeasible or unbounded" << endl; return 1; } if (status != GRB_OPTIMAL) { cout << "Optimization was stopped with status " << status << endl; return 1; } // Print best selected set cout << "Selected elements in best solution:" << endl << "\t"; for (e = 0; e < groundSetSize; e++) { if (Elem[e].get(GRB_DoubleAttr_X) < .9) continue; cout << " El" << e; } cout << endl; // Print number of solutions stored nSolutions = model.get(GRB_IntAttr_SolCount); cout << "Number of solutions found: " << nSolutions << endl; // Print objective values of solutions for (e = 0; e < nSolutions; e++) { model.set(GRB_IntParam_SolutionNumber, e); cout << model.get(GRB_DoubleAttr_PoolObjVal) << " "; if (e%15 == 14) cout << endl; } cout << endl; // print fourth best set if available if (nSolutions >= 4) { model.set(GRB_IntParam_SolutionNumber, 3); cout << "Selected elements in fourth best solution:" << endl << "\t"; for (e = 0; e < groundSetSize; e++) { if (Elem[e].get(GRB_DoubleAttr_Xn) < .9) continue; cout << " El" << e; } cout << endl; } } catch (GRBException e) { cout << "Error code = " << e.getErrorCode() << endl; cout << e.getMessage() << endl; } catch (...) { cout << "Exception during optimization" << endl; } // Free environment/vars delete[] Elem; delete env; return 0; }