Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
tsp.py
#!/usr/bin/env python3.7 # Copyright 2020, Gurobi Optimization, LLC # Solve a traveling salesman problem on a randomly generated set of # points using lazy constraints. The base MIP model only includes # 'degree-2' constraints, requiring each node to have exactly # two incident edges. Solutions to this model may contain subtours - # tours that don't visit every city. The lazy constraint callback # adds new constraints to cut them off. import sys import math import random from itertools import combinations import gurobipy as gp from gurobipy import GRB # Callback - use lazy constraints to eliminate sub-tours def subtourelim(model, where): if where == GRB.Callback.MIPSOL: # make a list of edges selected in the solution vals = model.cbGetSolution(model._vars) selected = gp.tuplelist((i, j) for i, j in model._vars.keys() if vals[i, j] > 0.5) # find the shortest cycle in the selected edge list tour = subtour(selected) if len(tour) < n: # add subtour elimination constr. for every pair of cities in tour model.cbLazy(gp.quicksum(model._vars[i, j] for i, j in combinations(tour, 2)) <= len(tour)-1) # Given a tuplelist of edges, find the shortest subtour def subtour(edges): unvisited = list(range(n)) cycle = range(n+1) # initial length has 1 more city while unvisited: # true if list is non-empty thiscycle = [] neighbors = unvisited while neighbors: current = neighbors[0] thiscycle.append(current) unvisited.remove(current) neighbors = [j for i, j in edges.select(current, '*') if j in unvisited] if len(cycle) > len(thiscycle): cycle = thiscycle return cycle # Parse argument if len(sys.argv) < 2: print('Usage: tsp.py npoints') sys.exit(1) n = int(sys.argv[1]) # Create n random points random.seed(1) points = [(random.randint(0, 100), random.randint(0, 100)) for i in range(n)] # Dictionary of Euclidean distance between each pair of points dist = {(i, j): math.sqrt(sum((points[i][k]-points[j][k])**2 for k in range(2))) for i in range(n) for j in range(i)} m = gp.Model() # Create variables vars = m.addVars(dist.keys(), obj=dist, vtype=GRB.BINARY, name='e') for i, j in vars.keys(): vars[j, i] = vars[i, j] # edge in opposite direction # You could use Python looping constructs and m.addVar() to create # these decision variables instead. The following would be equivalent # to the preceding m.addVars() call... # # vars = tupledict() # for i,j in dist.keys(): # vars[i,j] = m.addVar(obj=dist[i,j], vtype=GRB.BINARY, # name='e[%d,%d]'%(i,j)) # Add degree-2 constraint m.addConstrs(vars.sum(i, '*') == 2 for i in range(n)) # Using Python looping constructs, the preceding would be... # # for i in range(n): # m.addConstr(sum(vars[i,j] for j in range(n)) == 2) # Optimize model m._vars = vars m.Params.lazyConstraints = 1 m.optimize(subtourelim) vals = m.getAttr('x', vars) selected = gp.tuplelist((i, j) for i, j in vals.keys() if vals[i, j] > 0.5) tour = subtour(selected) assert len(tour) == n print('') print('Optimal tour: %s' % str(tour)) print('Optimal cost: %g' % m.objVal) print('')