Try our new documentation site (beta).


workforce1.m


function workforce1()

% Copyright 2020, Gurobi Optimization, LLC
%
% Assign workers to shifts; each worker may or may not be available on a
% particular day. If the problem cannot be solved, use IIS to find a set of
% conflicting constraints. Note that there may be additional conflicts
% besides what is reported via IIS.

% define data
nShifts  = 14;
nWorkers =  7;
nVars    = nShifts * nWorkers;

Shifts  = {'Mon1'; 'Tue2'; 'Wed3'; 'Thu4'; 'Fri5'; 'Sat6'; 'Sun7';
    'Mon8'; 'Tue9'; 'Wed10'; 'Thu11'; 'Fri12'; 'Sat13'; 'Sun14'};
Workers = {'Amy'; 'Bob'; 'Cathy'; 'Dan'; 'Ed'; 'Fred'; 'Gu'};

pay     = [10; 12; 10; 8; 8; 9; 11];

shiftRequirements = [3; 2; 4; 4; 5; 6; 5; 2; 2; 3; 4; 6; 7; 5];

availability = [
    0 1 1 0 1 0 1 0 1 1 1 1 1 1;
    1 1 0 0 1 1 0 1 0 0 1 0 1 0;
    0 0 1 1 1 0 1 1 1 1 1 1 1 1;
    0 1 1 0 1 1 0 1 1 1 1 1 1 1;
    1 1 1 1 1 0 1 1 1 0 1 0 1 1;
    1 1 1 0 0 1 0 1 1 0 0 1 1 1;
    1 1 1 0 1 1 1 1 1 1 1 1 1 1
    ];

% Build model
model.modelname  = 'workforce1';
model.modelsense = 'min';

% Initialize assignment decision variables:
%    x[w][s] == 1 if worker w is assigned
%    to shift s. Since an assignment model always produces integer
%    solutions, we use continuous variables and solve as an LP.
model.ub    = ones(nVars, 1);
model.obj   = zeros(nVars, 1);

for w = 1:nWorkers
    for s = 1:nShifts
        model.varnames{s+(w-1)*nShifts} = sprintf('%s.%s', Workers{w}, Shifts{s});
        model.obj(s+(w-1)*nShifts) = pay(w);
        if availability(w, s) == 0
            model.ub(s+(w-1)*nShifts) = 0;
        end
    end
end

% Set-up shift-requirements constraints
model.sense = repmat('=', nShifts, 1);
model.rhs   = shiftRequirements;
model.constrnames = Shifts;
model.A = sparse(nShifts, nVars);
for s = 1:nShifts
    for w = 1:nWorkers
        model.A(s, s+(w-1)*nShifts) = 1;
    end
end

% Save model
gurobi_write(model,'workforce1_m.lp');

% Optimize
params.logfile = 'workforce1_m.log';
result = gurobi(model, params);

% Display results
if strcmp(result.status, 'OPTIMAL')
    % The code may enter here if you change some of the data... otherwise
    % this will never be executed.
    fprintf('The optimal objective is %g\n', result.objval);
    fprintf('Schedule:\n');
    for s = 1:nShifts
        fprintf('\t%s:', Shifts{s});
        for w = 1:nWorkers
            if result.x(s+(w-1)*nShifts) > 0.9
                fprintf('%s ', Workers{w});
            end
        end
        fprintf('\n');
    end
else
    if strcmp(result.status, 'INFEASIBLE')
        fprintf('Problem is infeasible.... computing IIS\n');
        iis = gurobi_iis(model, params);
        if iis.minimal
            fprintf('IIS is minimal\n');
        else
            fprintf('IIS is not minimal\n');
        end
        
        if any(iis.Arows)
            fprintf('Rows in IIS: ');
            disp(strjoin(model.constrnames(iis.Arows)));
        end
        if any(iis.lb)
            fprintf('LB in IIS: ');
            disp(strjoin(model.varnames(iis.lb)));
        end
        if any(iis.ub)
            fprintf('UB in IIS: ');
            disp(strjoin(model.varnames(iis.ub)));
        end
    else
        % Just to handle user interruptions or other problems
        fprintf('Unexpected status %s\n',result.status);
    end
end

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization