Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
workforce4.py
#!/usr/bin/env python3.7 # Copyright 2020, Gurobi Optimization, LLC # Assign workers to shifts; each worker may or may not be available on a # particular day. We use lexicographic optimization to solve the model: # first, we minimize the linear sum of the slacks. Then, we constrain # the sum of the slacks, and we minimize a quadratic objective that # tries to balance the workload among the workers. import gurobipy as gp from gurobipy import GRB import sys # Number of workers required for each shift shifts, shiftRequirements = gp.multidict({ "Mon1": 3, "Tue2": 2, "Wed3": 4, "Thu4": 4, "Fri5": 5, "Sat6": 6, "Sun7": 5, "Mon8": 2, "Tue9": 2, "Wed10": 3, "Thu11": 4, "Fri12": 6, "Sat13": 7, "Sun14": 5, }) # Amount each worker is paid to work one shift workers, pay = gp.multidict({ "Amy": 10, "Bob": 12, "Cathy": 10, "Dan": 8, "Ed": 8, "Fred": 9, "Gu": 11, }) # Worker availability availability = gp.tuplelist([ ('Amy', 'Tue2'), ('Amy', 'Wed3'), ('Amy', 'Fri5'), ('Amy', 'Sun7'), ('Amy', 'Tue9'), ('Amy', 'Wed10'), ('Amy', 'Thu11'), ('Amy', 'Fri12'), ('Amy', 'Sat13'), ('Amy', 'Sun14'), ('Bob', 'Mon1'), ('Bob', 'Tue2'), ('Bob', 'Fri5'), ('Bob', 'Sat6'), ('Bob', 'Mon8'), ('Bob', 'Thu11'), ('Bob', 'Sat13'), ('Cathy', 'Wed3'), ('Cathy', 'Thu4'), ('Cathy', 'Fri5'), ('Cathy', 'Sun7'), ('Cathy', 'Mon8'), ('Cathy', 'Tue9'), ('Cathy', 'Wed10'), ('Cathy', 'Thu11'), ('Cathy', 'Fri12'), ('Cathy', 'Sat13'), ('Cathy', 'Sun14'), ('Dan', 'Tue2'), ('Dan', 'Wed3'), ('Dan', 'Fri5'), ('Dan', 'Sat6'), ('Dan', 'Mon8'), ('Dan', 'Tue9'), ('Dan', 'Wed10'), ('Dan', 'Thu11'), ('Dan', 'Fri12'), ('Dan', 'Sat13'), ('Dan', 'Sun14'), ('Ed', 'Mon1'), ('Ed', 'Tue2'), ('Ed', 'Wed3'), ('Ed', 'Thu4'), ('Ed', 'Fri5'), ('Ed', 'Sun7'), ('Ed', 'Mon8'), ('Ed', 'Tue9'), ('Ed', 'Thu11'), ('Ed', 'Sat13'), ('Ed', 'Sun14'), ('Fred', 'Mon1'), ('Fred', 'Tue2'), ('Fred', 'Wed3'), ('Fred', 'Sat6'), ('Fred', 'Mon8'), ('Fred', 'Tue9'), ('Fred', 'Fri12'), ('Fred', 'Sat13'), ('Fred', 'Sun14'), ('Gu', 'Mon1'), ('Gu', 'Tue2'), ('Gu', 'Wed3'), ('Gu', 'Fri5'), ('Gu', 'Sat6'), ('Gu', 'Sun7'), ('Gu', 'Mon8'), ('Gu', 'Tue9'), ('Gu', 'Wed10'), ('Gu', 'Thu11'), ('Gu', 'Fri12'), ('Gu', 'Sat13'), ('Gu', 'Sun14') ]) # Model m = gp.Model("assignment") # Assignment variables: x[w,s] == 1 if worker w is assigned to shift s. # This is no longer a pure assignment model, so we must use binary variables. x = m.addVars(availability, vtype=GRB.BINARY, name="x") # Slack variables for each shift constraint so that the shifts can # be satisfied slacks = m.addVars(shifts, name="Slack") # Variable to represent the total slack totSlack = m.addVar(name="totSlack") # Variables to count the total shifts worked by each worker totShifts = m.addVars(workers, name="TotShifts") # Constraint: assign exactly shiftRequirements[s] workers to each shift s, # plus the slack reqCts = m.addConstrs((slacks[s] + x.sum('*', s) == shiftRequirements[s] for s in shifts), "_") # Constraint: set totSlack equal to the total slack m.addConstr(totSlack == slacks.sum(), "totSlack") # Constraint: compute the total number of shifts for each worker m.addConstrs((totShifts[w] == x.sum(w) for w in workers), "totShifts") # Objective: minimize the total slack # Note that this replaces the previous 'pay' objective coefficients m.setObjective(totSlack) # Optimize def solveAndPrint(): m.optimize() status = m.status if status in (GRB.INF_OR_UNBD, GRB.INFEASIBLE, GRB.UNBOUNDED): print('The model cannot be solved because it is infeasible or \ unbounded') sys.exit(1) if status != GRB.OPTIMAL: print('Optimization was stopped with status %d' % status) sys.exit(0) # Print total slack and the number of shifts worked for each worker print('') print('Total slack required: %g' % totSlack.x) for w in workers: print('%s worked %g shifts' % (w, totShifts[w].x)) print('') solveAndPrint() # Constrain the slack by setting its upper and lower bounds totSlack.ub = totSlack.x totSlack.lb = totSlack.x # Variable to count the average number of shifts worked avgShifts = m.addVar(name="avgShifts") # Variables to count the difference from average for each worker; # note that these variables can take negative values. diffShifts = m.addVars(workers, lb=-GRB.INFINITY, name="Diff") # Constraint: compute the average number of shifts worked m.addConstr(len(workers) * avgShifts == totShifts.sum(), "avgShifts") # Constraint: compute the difference from the average number of shifts m.addConstrs((diffShifts[w] == totShifts[w] - avgShifts for w in workers), "Diff") # Objective: minimize the sum of the square of the difference from the # average number of shifts worked m.setObjective(gp.quicksum(diffShifts[w]*diffShifts[w] for w in workers)) # Optimize solveAndPrint()