Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
workforce4.R
# Copyright 2020, Gurobi Optimization, LLC # # Assign workers to shifts; each worker may or may not be available on a # particular day. We use Pareto optimization to solve the model: # first, we minimize the linear sum of the slacks. Then, we constrain # the sum of the slacks, and we minimize a quadratic objective that # tries to balance the workload among the workers. library(Matrix) library(gurobi) # define data nShifts <- 14 nWorkers <- 7 nVars <- (nShifts + 1) * (nWorkers + 1) + nWorkers + 1 varIdx <- function(w,s) {s+(w-1)*nShifts} shiftSlackIdx <- function(s) {s+nShifts*nWorkers} totShiftIdx <- function(w) {w + nShifts * (nWorkers+1)} avgShiftIdx <- ((nShifts+1)*(nWorkers+1)) diffShiftIdx <- function(w) {w + avgShiftIdx} totalSlackIdx <- nVars Shifts <- c('Mon1', 'Tue2', 'Wed3', 'Thu4', 'Fri5', 'Sat6', 'Sun7', 'Mon8', 'Tue9', 'Wed10', 'Thu11', 'Fri12', 'Sat13', 'Sun14') Workers <- c( 'Amy', 'Bob', 'Cathy', 'Dan', 'Ed', 'Fred', 'Gu' ) shiftRequirements <- c(3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 ) availability <- list( c( 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 ), c( 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 ), c( 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 ), c( 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 ), c( 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 ), c( 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 ), c( 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) ) # Function to display results solveandprint <- function(model, env) { result <- gurobi(model, env = env) if(result$status == 'OPTIMAL') { cat('The optimal objective is',result$objval,'\n') cat('Schedule:\n') for (s in 1:nShifts) { cat('\t',Shifts[s],':') for (w in 1:nWorkers) { if (result$x[varIdx(w,s)] > 0.9) cat(Workers[w],' ') } cat('\n') } cat('Workload:\n') for (w in 1:nWorkers) { cat('\t',Workers[w],':',result$x[totShiftIdx(w)],'\n') } } else { cat('Optimization finished with status',result$status) } result } # Set-up environment env <- list() env$logfile <- 'workforce4.log' # Build model model <- list() model$modelname <- 'workforce4' model$modelsense <- 'min' # Initialize assignment decision variables: # x[w][s] == 1 if worker w is assigned to shift s. # This is no longer a pure assignment model, so we must # use binary variables. model$vtype <- rep('C', nVars) model$lb <- rep(0, nVars) model$ub <- rep(1, nVars) model$obj <- rep(0, nVars) model$varnames <- rep('',nVars) for (w in 1:nWorkers) { for (s in 1:nShifts) { model$vtype[varIdx(w,s)] = 'B' model$varnames[varIdx(w,s)] = paste0(Workers[w],'.',Shifts[s]) if (availability[[w]][s] == 0) model$ub[varIdx(w,s)] = 0 } } # Initialize shift slack variables for (s in 1:nShifts) { model$varnames[shiftSlackIdx(s)] = paste0('ShiftSlack',Shifts[s]) model$ub[shiftSlackIdx(s)] = Inf } # Initialize worker slack and diff variables for (w in 1:nWorkers) { model$varnames[totShiftIdx(w)] = paste0('TotalShifts',Workers[w]) model$ub[totShiftIdx(w)] = Inf model$varnames[diffShiftIdx(w)] = paste0('DiffShifts',Workers[w]) model$ub[diffShiftIdx(w)] = Inf model$lb[diffShiftIdx(w)] = -Inf } #Initialize average shift variable model$ub[avgShiftIdx] = Inf model$varnames[avgShiftIdx] = 'AvgShift' #Initialize total slack variable model$ub[totalSlackIdx] = Inf model$varnames[totalSlackIdx] = 'TotalSlack' model$obj[totalSlackIdx] = 1 # Set-up shift-requirements constraints model$A <- spMatrix(nShifts,nVars, i = c(c(mapply(rep,1:nShifts,nWorkers)), c(1:nShifts)), j = c(mapply(varIdx,1:nWorkers, mapply(rep,1:nShifts,nWorkers)), shiftSlackIdx(1:nShifts)), x = rep(1,nShifts * (nWorkers+1))) model$sense <- rep('=',nShifts) model$rhs <- shiftRequirements model$constrnames <- Shifts # Set TotalSlack equal to the sum of each shift slack B <- spMatrix(1, nVars, i = rep(1,nShifts+1), j = c(shiftSlackIdx(1:nShifts),totalSlackIdx), x = c(rep(1,nShifts),-1)) model$A <- rbind(model$A, B) model$rhs <- c(model$rhs,0) model$sense <- c(model$sense,'=') model$constrnames <- c(model$constrnames, 'TotalSlack') # Set total number of shifts for each worker B <- spMatrix(nWorkers, nVars, i = c(mapply(rep,1:nWorkers,nShifts), 1:nWorkers), j = c(mapply(varIdx,c(mapply(rep,1:nWorkers,nShifts)),1:nShifts), totShiftIdx(1:nWorkers)), x = c(rep(1,nShifts*nWorkers),rep(-1,nWorkers))) model$A <- rbind(model$A, B) model$rhs <- c(model$rhs,rep(0,nWorkers)) model$sense <- c(model$sense,rep('=',nWorkers)) model$constrnames <- c(model$constrnames, sprintf('TotalShifts%s',Workers[1:nWorkers])) # Save initial model gurobi_write(model,'workforce4.lp', env) # Optimize result <- solveandprint(model, env) if (result$status != 'OPTIMAL') stop('Stop now\n') # Constraint the slack by setting its upper and lower bounds totalSlack <- result$x[totalSlackIdx] model$lb[totalSlackIdx] = totalSlack model$ub[totalSlackIdx] = totalSlack # Link average number of shifts worked and difference with average B <- spMatrix(nWorkers+1, nVars, i = c(1:nWorkers, 1:nWorkers, 1:nWorkers, rep(nWorkers+1,nWorkers+1)), j = c(totShiftIdx(1:nWorkers), diffShiftIdx(1:nWorkers), rep(avgShiftIdx,nWorkers), totShiftIdx(1:nWorkers),avgShiftIdx), x = c(rep(1, nWorkers), rep(-1,nWorkers), rep(-1,nWorkers), rep(1,nWorkers),-nWorkers)) model$A <- rbind(model$A, B) model$rhs <- c(model$rhs,rep(0,nWorkers+1)) model$sense <- c(model$sense,rep('=',nWorkers+1)) model$constrnames <- c(model$constrnames, sprintf('DiffShifts%s',Workers[1:nWorkers]), 'AvgShift') # Objective: minimize the sum of the square of the difference from the # average number of shifts worked model$obj <- 0 model$Q <- spMatrix(nVars,nVars, i = c(diffShiftIdx(1:nWorkers)), j = c(diffShiftIdx(1:nWorkers)), x = rep(1,nWorkers)) # Save modified model gurobi_write(model,'workforce4b.lp', env) # Optimize result <- solveandprint(model, env) if (result$status != 'OPTIMAL') stop('Stop now\n') #Clear space rm(model, env, availability, Shifts, Workers, shiftRequirements, result)