Try our new documentation site (beta).
The geometry of linear optimization problems
Before showing optimization models that exhibit bad behavior, we first need to understand the geometry behind them. Consider a problem of the form
To understand how changes in the input data affect the feasible region and the optimal solution, consider a small modification: , , and . Then our optimization problem would look like
Note that although we changed the right-hand side, this change had no effect in the optimal solution to the problem, but it did change the feasible region by enlarging the bottom part of the feasible area.
Changing the objective vector tilts the corresponding vector in the graphical representation. This of course also changes the optimal objective value. Perturbing a constraint tilts the graphical representation of the constraint. The change in changes the primal solution itself. The amount of tilting constraint undergoes depends on the relative value of the perturbation. For example, although the constraint and the constraint induce the same feasible region, the perturbation will induce more tilting that the perturbation .