Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
dense_c++.cpp
/* Copyright 2023, Gurobi Optimization, LLC */ /* This example formulates and solves the following simple QP model: minimize x + y + x^2 + x*y + y^2 + y*z + z^2 subject to x + 2 y + 3 z >= 4 x + y >= 1 x, y, z non-negative The example illustrates the use of dense matrices to store A and Q (and dense vectors for the other relevant data). We don't recommend that you use dense matrices, but this example may be helpful if you already have your data in this format. */ #include "gurobi_c++.h" using namespace std; static bool dense_optimize(GRBEnv* env, int rows, int cols, double* c, /* linear portion of objective function */ double* Q, /* quadratic portion of objective function */ double* A, /* constraint matrix */ char* sense, /* constraint senses */ double* rhs, /* RHS vector */ double* lb, /* variable lower bounds */ double* ub, /* variable upper bounds */ char* vtype, /* variable types (continuous, binary, etc.) */ double* solution, double* objvalP) { GRBModel model = GRBModel(*env); int i, j; bool success = false; /* Add variables to the model */ GRBVar* vars = model.addVars(lb, ub, NULL, vtype, NULL, cols); /* Populate A matrix */ for (i = 0; i < rows; i++) { GRBLinExpr lhs = 0; for (j = 0; j < cols; j++) if (A[i*cols+j] != 0) lhs += A[i*cols+j]*vars[j]; model.addConstr(lhs, sense[i], rhs[i]); } GRBQuadExpr obj = 0; for (j = 0; j < cols; j++) obj += c[j]*vars[j]; for (i = 0; i < cols; i++) for (j = 0; j < cols; j++) if (Q[i*cols+j] != 0) obj += Q[i*cols+j]*vars[i]*vars[j]; model.setObjective(obj); model.optimize(); model.write("dense.lp"); if (model.get(GRB_IntAttr_Status) == GRB_OPTIMAL) { *objvalP = model.get(GRB_DoubleAttr_ObjVal); for (i = 0; i < cols; i++) solution[i] = vars[i].get(GRB_DoubleAttr_X); success = true; } delete[] vars; return success; } int main(int argc, char *argv[]) { GRBEnv* env = 0; try { env = new GRBEnv(); double c[] = {1, 1, 0}; double Q[3][3] = {{1, 1, 0}, {0, 1, 1}, {0, 0, 1}}; double A[2][3] = {{1, 2, 3}, {1, 1, 0}}; char sense[] = {'>', '>'}; double rhs[] = {4, 1}; double lb[] = {0, 0, 0}; bool success; double objval, sol[3]; success = dense_optimize(env, 2, 3, c, &Q[0][0], &A[0][0], sense, rhs, lb, NULL, NULL, sol, &objval); cout << "optimal=" << success << " x: " << sol[0] << " y: " << sol[1] << " z: " << sol[2] << endl; } catch(GRBException e) { cout << "Error code = " << e.getErrorCode() << endl; cout << e.getMessage() << endl; } catch(...) { cout << "Exception during optimization" << endl; } delete env; return 0; }