Try our new documentation site (beta).


multiobj.R


# Copyright 2023, Gurobi Optimization, LLC
#
# Want to cover three different sets but subject to a common budget of
# elements allowed to be used. However, the sets have different priorities to
# be covered; and we tackle this by using multi-objective optimization.

library(Matrix)
library(gurobi)

# define primitive data
groundSetSize     <- 20
nSubSets          <- 4
Budget            <- 12
Set               <- list(
    c( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
    c( 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ),
    c( 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0 ),
    c( 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0 ) )
SetObjPriority    <- c(3, 2, 2, 1)
SetObjWeight      <- c(1.0, 0.25, 1.25, 1.0)

# Initialize model
model             <- list()
model$modelsense  <- 'max'
model$modelname   <- 'multiobj'

# Set variables, all of them are binary, with 0,1 bounds.
model$vtype       <- 'B'
model$lb          <- 0
model$ub          <- 1
model$varnames    <- paste(rep('El', groundSetSize), 1:groundSetSize, sep='')

# Build constraint matrix
model$A           <- spMatrix(1, groundSetSize,
                              i = rep(1,groundSetSize),
                              j = 1:groundSetSize,
                              x = rep(1,groundSetSize))
model$rhs         <- c(Budget)
model$sense       <- c('<')
model$constrnames <- c('Budget')

# Set multi-objectives
model$multiobj          <- list()
for (m in 1:nSubSets) {
  model$multiobj[[m]]          <- list()
  model$multiobj[[m]]$objn     <- Set[[m]]
  model$multiobj[[m]]$priority <- SetObjPriority[m]
  model$multiobj[[m]]$weight   <- SetObjWeight[m]
  model$multiobj[[m]]$abstol   <- m
  model$multiobj[[m]]$reltol   <- 0.01
  model$multiobj[[m]]$name     <- sprintf('Set%d', m)
  model$multiobj[[m]]$con      <- 0.0
}

# Save model
gurobi_write(model,'multiobj_R.lp')

# Set parameters
params               <- list()
params$PoolSolutions <- 100

# Optimize
result <- gurobi(model, params)

# Capture solution information
if (result$status != 'OPTIMAL') {
  cat('Optimization finished with status', result$status, '\n')
  stop('Stop now\n')
}

# Print best solution
cat('Selected elements in best solution:\n')
for (e in 1:groundSetSize) {
  if(result$x[e] < 0.9) next
  cat(' El',e,sep='')
}
cat('\n')

# Iterate over the best 10 solutions
if ('pool' %in% names(result)) {
  solcount <- length(result$pool)
  cat('Number of solutions found:', solcount, '\n')
  if (solcount > 10) {
    solcount <- 10
  }
  cat('Objective values for first', solcount, 'solutions:\n')
  for (k in 1:solcount) {
    cat('Solution', k, 'has objective:', result$pool[[k]]$objval[1], '\n')
  }
} else {
  solcount <- 1
  cat('Number of solutions found:', solcount, '\n')
  cat('Solution 1 has objective:', result$objval, '\n')
}

# Clean up
rm(model, params, result)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization