Try our new documentation site (beta).


sensitivity.R


# Copyright 2023, Gurobi Optimization, LLC
#
# A simple sensitivity analysis example which reads a MIP model
# from a file and solves it. Then each binary variable is set
# to 1-X, where X is its value in the optimal solution, and
# the impact on the objective function value is reported.

library(Matrix)
library(gurobi)

args <- commandArgs(trailingOnly = TRUE)
if (length(args) < 1) {
  stop('Usage: Rscript sensitivity.R filename\n')
}

# Read model
cat('Reading model',args[1],'...')
model <- gurobi_read(args[1])
cat('... done\n')

# Detect set of non-continous variables
numvars    <- ncol(model$A)
intvars    <- which(model$vtype != 'C')
numintvars <- length(intvars)
if (numintvars < 1) {
  stop('All model\'s variables are continuous, nothing to do\n')
}
maxanalyze <- 10

# Optimize
result <- gurobi(model)

# Capture solution information
if (result$status != 'OPTIMAL') {
  cat('Optimization finished with status', result$status, '\n')
  stop('Stop now\n')
}
origx       <- result$x
origobjval  <- result$objval

# create lb and ub if they do not exists, and set them to default values
if (!('lb' %in% names(model))) {
  model$lb <- numeric(numvars)
}
if (!('ub' %in% names(model))) {
  # This line is not needed, as we must have ub defined
  model$ub <- Inf + numeric(numvars)
}

# Disable output for subsequent solves
params            <- list()
params$OutputFlag <- 0

# We limit the sensitivity analysis to a maximum number of variables
numanalyze <- 0

# Iterate through unfixed binary variables in the model
for (j in 1:numvars) {
  if (model$vtype[j] != 'B' &&
      model$vtype[j] != 'I'   ) next
  if (model$vtype[j] == 'I') {
    if (model$lb[j] != 0.0)     next
    if (model$ub[j] != 1.0)     next
  } else {
    if (model$lb[j] > 0.0)      next
    if (model$ub[j] < 1.0)      next
  }

  # Update MIP start for all variables
  model$start <- origx

  # Set variable to 1-X, where X is its value in optimal solution
  if (origx[j] < 0.5) {
    model$start[j] <- 1
    model$lb[j]    <- 1
  } else {
    model$start[j] <- 0
    model$ub[j]    <- 0
  }

  # Optimize
  result <- gurobi(model, params)

  # Display result
  varnames <- ''
  if ('varnames' %in% names(model)) {
    varnames <- model$varnames[j]
  } else {
    varnames <- sprintf('%s%d', model$vtype[j], j)
  }
  gap <- 0
  if (result$status != 'OPTIMAL') {
    gap <- Inf
  } else {
    gap <- result$objval - origobjval
  }
  cat('Objective sensitivity for variable', varnames, 'is', gap, '\n')

  # Restore original bounds
  model$lb[j] <- 0
  model$ub[j] <- 1

  numanalyze <- numanalyze + 1

  # Stop when we reached the maximum number of sensitivity analysis steps
  if (numanalyze >= maxanalyze) {
      cat('Limit sensitivity analysis to the first', maxanalyze, 'variables\n')
      break
  }
}

# Clear space
rm(model, params, result, origx)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization