Try our new documentation site (beta).


sudoku.R


#  Copyright 2023, Gurobi Optimization, LLC */
#
# Sudoku example.
#
# The Sudoku board is a 9x9 grid, which is further divided into a 3x3 grid
# of 3x3 grids.  Each cell in the grid must take a value from 0 to 9.
# No two grid cells in the same row, column, or 3x3 subgrid may take the
# same value.
#
# In the MIP formulation, binary variables x[i,j,v] indicate whether
# cell <i,j> takes value 'v'.  The constraints are as follows:
#   1. Each cell must take exactly one value (sum_v x[i,j,v] = 1)
#   2. Each value is used exactly once per row (sum_i x[i,j,v] = 1)
#   3. Each value is used exactly once per column (sum_j x[i,j,v] = 1)
#   4. Each value is used exactly once per 3x3 subgrid (sum_grid x[i,j,v] = 1)
#
# Input datasets for this example can be found in examples/data/sudoku*.
#

library(Matrix)
library(gurobi)

args <- commandArgs(trailingOnly = TRUE)
if (length(args) < 1) {
  stop('Usage: Rscript sudoku.R filename\n')
}

# Read input file
conn <- file(args[1], open='r')
if(!isOpen(conn)) {
  cat('Could not read file',args[1],'\n')
  stop('Stop now\n')
}
linn <- readLines(conn)
close(conn)

# Ensure that all lines have the same length as the number of lines, and
# that the character set is the correct one.
# Load fixed positions in board
Dim    <- length(linn)
board  <- matrix(0, Dim, Dim, byrow = TRUE)
if (Dim != 9) {
  cat('Input file',args[1],'has',Dim,'lines instead of 9\n')
  stop('Stop now\n')
}
for (i in 1:Dim) {
  line <- strsplit(linn[[i]],split='')[[1]]
  if (length(line) != Dim) {
    cat('Input line',i,'has',length(line),'characters, expected',Dim,'\n')
    stop('Stop now\n')
  }
  for (j in 1:Dim) {
    if (line[[j]] != '.') {
      k <- as.numeric(line[[j]])
      if (k < 1 || k > Dim) {
        cat('Unexpected character in Input line',i,'character',j,'\n')
        stop('Stop now\n')
      } else {
        board[i,j] = k
      }
    }
  }
}

# Map X[i,j,k] into an index variable in the model
nVars  <- Dim * Dim * Dim
varIdx <- function(i,j,k) {i + (j-1) * Dim + (k-1) * Dim * Dim}

cat('Dataset grid:',Dim,'x',Dim,'\n')

# Set up parameters
params <- list()
params$logfile <- 'sudoku.log'

# Build model
model            <- list()
model$modelname  <- 'sudoku'
model$modelsense <- 'min'

# Create variable names, types, and bounds
model$vtype    <- 'B'
model$lb       <- rep(0,  nVars)
model$ub       <- rep(1,  nVars)
model$varnames <- rep('', nVars)
for (i in 1:Dim) {
  for (j in 1:Dim) {
    for (k in 1:Dim) {
      if (board[i,j] == k) model$lb[varIdx(i,j,k)] = 1
      model$varnames[varIdx(i,j,k)] = paste0('X',i,j,k)
    }
  }
}

# Create (empty) constraints:
model$A           <- spMatrix(0,nVars)
model$rhs         <- c()
model$sense       <- c()
model$constrnames <- c()

# Each cell gets a value:
for (i in 1:Dim) {
  for (j in 1:Dim) {
    B <- spMatrix(1, nVars,
            i = rep(1,Dim),
            j = varIdx(i,j,1:Dim),
            x = rep(1,Dim))
    model$A           <- rbind(model$A, B)
    model$rhs         <- c(model$rhs, 1)
    model$sense       <- c(model$sense, '=')
    model$constrnames <- c(model$constrnames, paste0('OneValInCell',i,j))
  }
}

# Each value must appear once in each column
for (i in 1:Dim) {
  for (k in 1:Dim) {
    B <- spMatrix(1, nVars,
            i = rep(1,Dim),
            j = varIdx(i,1:Dim,k),
            x = rep(1,Dim))
    model$A           <- rbind(model$A, B)
    model$rhs         <- c(model$rhs, 1)
    model$sense       <- c(model$sense, '=')
    model$constrnames <- c(model$constrnames, paste0('OnceValueInRow',i,k))
  }
}

#Each value must appear once in each row
for (j in 1:Dim) {
  for (k in 1:Dim) {
    B <- spMatrix(1, nVars,
            i = rep(1,Dim),
            j = varIdx(1:Dim,j,k),
            x = rep(1,Dim))
    model$A           <- rbind(model$A, B)
    model$rhs         <- c(model$rhs, 1)
    model$sense       <- c(model$sense, '=')
    model$constrnames <- c(model$constrnames, paste0('OnceValueInColumn',j,k))
  }
}

# Each value must appear once in each subgrid
SubDim <- 3
for (k in 1:Dim) {
  for (g1 in 1:SubDim) {
    for (g2 in 1:SubDim) {
      B <- spMatrix(1, nVars,
              i = rep(1,Dim),
              j = c(varIdx(1+(g1-1)*SubDim,(g2-1)*SubDim + 1:SubDim, k),
                    varIdx(2+(g1-1)*SubDim,(g2-1)*SubDim + 1:SubDim, k),
                    varIdx(3+(g1-1)*SubDim,(g2-1)*SubDim + 1:SubDim, k)),
              x = rep(1,Dim))
      model$A           <- rbind(model$A, B)
      model$rhs         <- c(model$rhs, 1)
      model$sense       <- c(model$sense, '=')
      model$constrnames <- c(model$constrnames,
                             paste0('OnceValueInSubGrid',g1,g2,k))
    }
  }
}

# Save model
gurobi_write(model, 'sudoku.lp', params)

# Optimize model
result <- gurobi(model, params =  params)

if (result$status == 'OPTIMAL') {
  cat('Solution:\n')
  cat('----------------------------------\n')
  for (i in 1:Dim) {
    for (j in 1:Dim) {
      if (j %% SubDim == 1) cat('| ')
      for (k in 1:Dim) {
        if (result$x[varIdx(i,j,k)] > 0.99) {
          cat(k,' ')
        }
      }
    }
    cat('|\n')
    if (i %% SubDim == 0) cat('----------------------------------\n')
  }
} else {
  cat('Problem was infeasible\n')
}

# Clear space
rm(result, model, board, linn, params)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization