We are in the midst of a “golden age” of data analytics, where high-quality data abounds and powerful advanced analytics tools are readily available.
Enterprises across the business spectrum are looking to leverage these analytics tools to generate solutions to their mission-critical problems, guide their predictions and decisions, and gain a competitive advantage. But – with so many analytics tools on the market – many companies have difficulties determining which ones they need.
Broadly speaking, analytics offers us three different types of tools:
All three types of analytics tools are widely used by organizations today. To give you a recent example that illustrates this: As governments and the healthcare industry rush to vaccinate the global population against COVID-19, descriptive analytics tools can provide us with an accurate, real-time overview of current vaccination and infection rates, predictive analytics tools can forecast what would happen to infection rates if we administer more vaccines in specific locations at certain times, and prescriptive analytics tools can help us decide exactly where and when to distribute vaccines.
If you – as a data scientist or IT professional – want to extract maximum value from your data (by utilizing it to drive insights, predictions, decisions, and the best possible business outcomes), you should use all three types of analytics tools, ideally in an integrated manner.
You probably have a very firm grasp of descriptive and predictive analytics tools, but perhaps are not that familiar with prescriptive analytics in general and mathematical optimization (the primary prescriptive analytics tool) in particular.
In this article, I’ll briefly explain how you can get started using mathematical optimization and provide some examples of how this prescriptive analytics technology can be combined with machine learning to deliver business benefits across various industries.
Chances are that you, like most data scientists and IT professionals, already have some experience using mathematical optimization – most likely in Excel. Excel – like a Swiss Army Knife – provides users access to a number of different tools, including forecasting and scenario analysis functionality and a basic mathematical optimization solver.
Although Excel gives you the opportunity to get your get your feet wet with these analytics tools and perform simple tasks, this software’s capabilities are quite limited as it can’t handle large, multi-dimensional data sets or problems of significant complexity.
If you want to use mathematical optimization or other sophisticated analytics tools at scale, you need a more specialized and robust tool for the job.
When it comes to mathematical optimization, there’s a wide array of commercial mathematical optimization computational and modeling tools on the market, many of which interface with many of the popular programming languages that data scientists are accustomed to, such as Python, MATLAB, and R.
You can use your programming language of choice to build mathematical optimization models and applications – just like you do with machine learning. Of course, it will take some time and effort to learn to write code for mathematical optimization, but in the end, it will pay off, as you will be able to utilize this potent prescriptive analytics technology – on its own or in combination with machine learning – to automatically generate solutions to your most critical and challenging business problems and make optimal decisions.
Mathematical optimization and machine learning have proved to be a dynamic duo, and companies across many different industries have used these two analytics technologies together to address a wide range of real-world business problems and achieve greater productivity and profitability.
Here are just a few examples of how this combination of mathematical optimization and machine learning is delivering major business value in various industry verticals:
We are seeing an increase in the number of data scientists using mathematical optimization as well as the number of different use cases of this prescriptive analytics technology (on its own and in combination with machine learning) across various industries.
If you want to add mathematical optimization to your toolbox, you can start by exploring and experimenting with mathematical optimization in Excel. Then – when you are ready to experience the full power of this technology – you can move on to industrial-strength mathematical optimization tools that will enable you to tackle problems that are huge in terms of complexity, scale, and significance.
If you want to unlock the true value of your data (by using it to not only derive insights and predictions, but also to drive optimal decision-making), then you need mathematical optimization – along with machine learning and other analytics technologies – in your toolset.
A version of this article was originally published on insideBIGDATA here.
Vice President and Technical Fellow
Vice President and Technical Fellow
Dr. Gregory Glockner has a B.S. magna cum laude from Yale University in Applied Mathematics and Music, and an M.S. and Ph.D. in Operations Research from the Georgia Institute of Technology. His doctoral dissertation was awarded the 1997 Transportation Science Dissertation Prize from INFORMS. Dr. Glockner has trained users of optimization software in Brazil, Hong Kong, Japan, Singapore, South Korea, and throughout the USA and Canada. He is an expert in optimization modeling and software development: his professional experience in software development includes all major platforms and 9 of the top 10 programming languages in the TIOBE Programming Community Index. Prior to joining Gurobi Optimization in 2009, Dr. Glockner was partner and Chief Operating Officer for Dwaffler, a provider of decision analysis tools. From 1998-2007, he worked at ILOG in two different positions: as a Senior Technical Account Manager and a Product Manager. As an ILOG Senior Technical Account Manager, he introduced advanced optimization and rules software to customers across North America. As an ILOG Product Manager, he was responsible for product management of CPLEX, ODM, OPL and Solver. From 1997-1998, he worked at Pacific Gas & Electric, where he developed stochastic programming software for hydroelectric power scheduling, and he built statistical tools for energy trading in the deregulated energy market. He has also worked as an operations research analyst for the Federal Aviation Administration and for Northwest Airlines.
Dr. Gregory Glockner has a B.S. magna cum laude from Yale University in Applied Mathematics and Music, and an M.S. and Ph.D. in Operations Research from the Georgia Institute of Technology. His doctoral dissertation was awarded the 1997 Transportation Science Dissertation Prize from INFORMS. Dr. Glockner has trained users of optimization software in Brazil, Hong Kong, Japan, Singapore, South Korea, and throughout the USA and Canada. He is an expert in optimization modeling and software development: his professional experience in software development includes all major platforms and 9 of the top 10 programming languages in the TIOBE Programming Community Index. Prior to joining Gurobi Optimization in 2009, Dr. Glockner was partner and Chief Operating Officer for Dwaffler, a provider of decision analysis tools. From 1998-2007, he worked at ILOG in two different positions: as a Senior Technical Account Manager and a Product Manager. As an ILOG Senior Technical Account Manager, he introduced advanced optimization and rules software to customers across North America. As an ILOG Product Manager, he was responsible for product management of CPLEX, ODM, OPL and Solver. From 1997-1998, he worked at Pacific Gas & Electric, where he developed stochastic programming software for hydroelectric power scheduling, and he built statistical tools for energy trading in the deregulated energy market. He has also worked as an operations research analyst for the Federal Aviation Administration and for Northwest Airlines.
GUROBI NEWSLETTER
Latest news and releases
Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.
Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.
Cookie | Duration | Description |
---|---|---|
_biz_flagsA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_pendingA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_sid | 30 minutes | This cookie is set by Bizible, to store the user's session id. |
ARRAffinity | session | ARRAffinity cookie is set by Azure app service, and allows the service to choose the right instance established by a user to deliver subsequent requests made by that user. |
ARRAffinitySameSite | session | This cookie is set by Windows Azure cloud, and is used for load balancing to make sure the visitor page requests are routed to the same server in any browsing session. |
BIGipServersj02web-nginx-app_https | session | NGINX cookie |
cookielawinfo-checkbox-advertisement | 1 year | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
CookieLawInfoConsent | 1 year | Records the default button state of the corresponding category & the status of CCPA. It works only in coordination with the primary cookie. |
elementor | never | This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time. |
JSESSIONID | session | New Relic uses this cookie to store a session identifier so that New Relic can monitor session counts for an application. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
__cf_bm | 30 minutes | This cookie, set by Cloudflare, is used to support Cloudflare Bot Management. |
_biz_nA | 1 year | Bizible sets this cookie to remember users’ settings as well as for authentication and analytics. |
_biz_uid | 1 year | This cookie is set by Bizible, to store user id on the current domain. |
_hjAbsoluteSessionInProgress | 30 minutes | Hotjar sets this cookie to detect a user's first pageview session, which is a True/False flag set by the cookie. |
_mkto_trk | 2 years | This cookie is set by Marketo. This allows a website to track visitor behavior on the sites on which the cookie is installed and to link a visitor to the recipient of an email marketing campaign, to measure campaign effectiveness. Tracking is performed anonymously until a user self-identifies by submitting a form. |
bcookie | 1 year | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser ID. |
bscookie | 1 year | LinkedIn sets this cookie to store performed actions on the website. |
doc_langsBB | 1 year | Documentation system cookie |
doc_version | 1 year | Documentation system cookie |
lang | session | LinkedIn sets this cookie to remember a user's language setting. |
lidc | 1 day | LinkedIn sets the lidc cookie to facilitate data center selection. |
UserMatchHistory | 1 month | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
whova_client_id | 10 years | Event agenda system cookie |
Cookie | Duration | Description |
---|---|---|
_gat_UA-5909815-1 | 1 minute | A variation of the _gat cookie set by Google Analytics and Google Tag Manager to allow website owners to track visitor behaviour and measure site performance. The pattern element in the name contains the unique identity number of the account or website it relates to. |
Cookie | Duration | Description |
---|---|---|
_an_uid | 7 days | 6Sense Cookie |
_BUID | 1 year | This cookie, set by Bizible, is a universal user id to identify the same user across multiple clients’ domains. |
_ga | 2 years | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors. |
_ga_* | 1 year 1 month 4 days | Google Analytics sets this cookie to store and count page views. |
_gat_UA-* | 1 minute | Google Analytics sets this cookie for user behaviour tracking. |
_gcl_au | 3 months | Provided by Google Tag Manager to experiment advertisement efficiency of websites using their services. |
_gd_session | 4 hours | This cookie is used for collecting information on users visit to the website. It collects data such as total number of visits, average time spent on the website and the pages loaded. |
_gd_visitor | 2 years | This cookie is used for collecting information on the users visit such as number of visits, average time spent on the website and the pages loaded for displaying targeted ads. |
_gid | 1 day | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_hjFirstSeen | 30 minutes | Hotjar sets this cookie to identify a new user’s first session. It stores the true/false value, indicating whether it was the first time Hotjar saw this user. |
_hjIncludedInSessionSample_* | 2 minutes | Hotjar cookie that is set to determine if a user is included in the data sampling defined by a site's daily session limit. |
_hjRecordingEnabled | never | Hotjar sets this cookie when a Recording starts and is read when the recording module is initialized, to see if the user is already in a recording in a particular session. |
_hjRecordingLastActivity | never | Hotjar sets this cookie when a user recording starts and when data is sent through the WebSocket. |
_hjSession_* | 30 minutes | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjSessionUser_* | 1 year | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjTLDTest | session | To determine the most generic cookie path that has to be used instead of the page hostname, Hotjar sets the _hjTLDTest cookie to store different URL substring alternatives until it fails. |
6suuid | 2 years | 6Sense Cookie |
AnalyticsSyncHistory | 1 month | LinkedIn cookie |
BE_CLA3 | 1 year 1 month 4 days | BrightEdge sets this cookie to enable data aggregation, analysis and report creation to assess marketing effectiveness and provide solutions for SEO, SEM and website performance. |
CONSENT | 2 years | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
dj | 10 years | DemandJump cookie |
djaimid.a28e | 2 years | DemandJump cookiean |
djaimses.a28e | 30 minutes | DemandJump cookie |
li_gc | 5 months 27 days | LinkedIn Cookie |
ln_or | 1 day | LinkedIn Cookie |
vuid | 2 years | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
Cookie | Duration | Description |
---|---|---|
__adroll | 1 year 1 month | This cookie is set by AdRoll to identify users across visits and devices. It is used by real-time bidding for advertisers to display relevant advertisements. |
__adroll_fpc | 1 year | AdRoll sets this cookie to target users with advertisements based on their browsing behaviour. |
__adroll_shared | 1 year 1 month | Adroll sets this cookie to collect information on users across different websites for relevant advertising. |
__ar_v4 | 1 year | This cookie is set under the domain DoubleClick, to place ads that point to the website in Google search results and to track conversion rates for these ads. |
_fbp | 3 months | This cookie is set by Facebook to display advertisements when either on Facebook or on a digital platform powered by Facebook advertising, after visiting the website. |
_te_ | session | Adroll cookie |
fr | 3 months | Facebook sets this cookie to show relevant advertisements to users by tracking user behaviour across the web, on sites that have Facebook pixel or Facebook social plugin. |
IDE | 1 year 24 days | Google DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile. |
li_sugr | 3 months | LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant. |
test_cookie | 15 minutes | The test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies. |
VISITOR_INFO1_LIVE | 5 months 27 days | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | session | YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |