Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
feasopt.R
# Copyright 2020, Gurobi Optimization, LLC # # This example reads a MIP model from a file, adds artificial # variables to each constraint, and then minimizes the sum of the # artificial variables. A solution with objective zero corresponds # to a feasible solution to the input model. # We can also use FeasRelax feature to do it. In this example, we # use minrelax=1, i.e. optimizing the returned model finds a solution # that minimizes the original objective, but only from among those # solutions that minimize the sum of the artificial variables. library(Matrix) library(gurobi) args <- commandArgs(trailingOnly = TRUE) if (length(args) < 1) { stop('Usage: Rscript feasopt.R filename\n') } # Set-up environment env <- list() env$logfile <- 'feasopt.log' # Read model cat('Reading model',args[1],'...') model <- gurobi_read(args[1], env) cat('... done\n') # Create penalties penalties <- list() penalties$lb <- Inf penalties$ub <- Inf penalties$rhs <- rep(1,length(model$rhs)) result <- gurobi_feasrelax(model, 0, TRUE, penalties, env = env) # Display results if (result$feasobj > 1e-6) { cat('Model',args[1],'is infeasible within variable bounds\n') } else { cat('Model',args[1],'is feasible\n') } # Clear space rm(env, model, penalties, result)