Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
fixanddive.R
# Copyright 2020, Gurobi Optimization, LLC # # Implement a simple MIP heuristic. Relax the model, # sort variables based on fractionality, and fix the 25% of # the fractional variables that are closest to integer variables. # Repeat until either the relaxation is integer feasible or # linearly infeasible. library(Matrix) library(gurobi) args <- commandArgs(trailingOnly = TRUE) if (length(args) < 1) { stop('Usage: Rscript fixanddive.R filename\n') } # Read model cat('Reading model',args[1],'...') model <- gurobi_read(args[1]) cat('... done\n') # Detect set of non-continous variables numvars <- ncol(model$A) intvars <- which(model$vtype != 'C') numintvars <- length(intvars) if (numintvars < 1) { stop('All model\'s variables are continuous, nothing to do\n') } # create lb and ub if they do not exists, and set them to default values if (!('lb' %in% model)) { model$lb <- numeric(numvars) } if (!('ub' %in% model)) { model$ub <- Inf + numeric(numvars) } # set all variables to continuous ovtype <- model$vtype model$vtype[1:numvars] <- 'C' # parameters params <- list() params$OutputFlag <- 0 result <- gurobi(model, params) # Perform multiple iterations. In each iteration, identify the first # quartile of integer variables that are closest to an integer value # in the relaxation, fix them to the nearest integer, and repeat. for (iter in 1:1000) { # See if status is optimal if (result$status != 'OPTIMAL') { cat('Model status is', result$status,'\n') stop('Can not keep fixing variables\n') } # collect fractionality of integer variables fractional <- abs(result$x - floor(result$x+0.5)) fractional <- replace(fractional, fractional < 1e-5, 1) fractional <- replace(fractional, ovtype == 'C', 1) fractional <- replace(fractional, ovtype == 'S', 1) nfractional <- length(which(fractional<0.51)) cat('Iteration:', iter, 'Obj:', result$objval, 'Fractional:', nfractional, '\n') if (nfractional == 0) { cat('Found feasible solution - objective', result$objval, '\n') break } # order the set of fractional index select <- order(fractional, na.last = TRUE, decreasing = FALSE) # fix 25% of variables nfix <- as.integer(ceiling(nfractional / 4)) # cat('Will fix', nfix, 'variables, out of', numvars, '\n') if (nfix < 10) cat('Fixing ') else cat('Fixing',nfix,'variables, fractionality threshold:',fractional[select[nfix]],'\n') for (k in 1:nfix) { j <- select[k] val <- floor(result$x[j] + 0.5) model$lb[j] <- val model$ub[j] <- val if (nfix < 10) cat(model$varname[j],'x*=',result$x[j],'to',val,' ') } if (nfix < 10) cat('\n') # reoptimize result <- gurobi(model, params) } # Clear space rm(model, params, result)