Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
genconstr.m
function genconstr() % Copyright 2020, Gurobi Optimization, LLC % % In this example we show the use of general constraints for modeling % some common expressions. We use as an example a SAT-problem where we % want to see if it is possible to satisfy at least four (or all) clauses % of the logical for % % L = (x1 or ~x2 or x3) and (x2 or ~x3 or x4) and % (x3 or ~x4 or x1) and (x4 or ~x1 or x2) and % (~x1 or ~x2 or x3) and (~x2 or ~x3 or x4) and % (~x3 or ~x4 or x1) and (~x4 or ~x1 or x2) % % We do this by introducing two variables for each literal (itself and its % negated value), a variable for each clause, and then two % variables for indicating if we can satisfy four, and another to identify % the minimum of the clauses (so if it one, we can satisfy all clauses) % and put these two variables in the objective. % i.e. the Objective function will be % % maximize Obj1 + Obj2 % % Obj1 = MIN(Clause2, ... , Clause8) % Obj2 = 2 -> Clause2 + ... + Clause8 >= 4 % % thus, the objective value will be two if and only if we can satisfy all % clauses; one if and only if at least four clauses can be satisfied, and % zero otherwise. % % define primitive data n = 4; nLiterals = 4; nClauses = 8; nObj = 2; nVars = 2 * nLiterals + nClauses + nObj; Clauses = [ 1, n+2, 3; 2, n+3, 4; 3, n+4, 1; 4, n+1, 2; n+1, n+2, 3; n+2, n+3, 4; n+3, n+4, 1; n+4, n+1, 2 ]; % Create model model.modelname = 'genconstr'; model.modelsense = 'max'; % Set-up data for variables and constraints model.vtype = repmat('B', nVars, 1); model.ub = ones(nVars, 1); model.obj = [zeros(2*nLiterals + nClauses, 1); ones(nObj, 1)]; model.A = sparse(nLiterals, nVars); model.rhs = ones(nLiterals, 1); model.sense = repmat('=', nLiterals, 1); for j = 1:nLiterals model.varnames{j} = sprintf('X%d', j); model.varnames{nLiterals+j} = sprintf('notX%d', j); end for j = 1:nClauses model.varnames{2*nLiterals+j} = sprintf('Clause%d', j); end for j = 1:nObj model.varnames{2*nLiterals+nClauses+j} = sprintf('Obj%d', j); end % Link Xi and notXi for i = 1:nLiterals model.A(i, i) = 1; model.A(i, nLiterals+i) = 1; model.constrnames{i} = sprintf('CNSTR_X%d', i); end % Link clauses and literals for i = 1:nClauses model.genconor(i).resvar = 2 * nLiterals + i; model.genconor(i).vars = Clauses(i:i,1:3); model.genconor(i).name = sprintf('CNSTR_Clause%d', i); end % Link objs with clauses model.genconmin.resvar = 2 * nLiterals + nClauses + 1; for i = 1:nClauses model.genconmin.vars(i) = 2 * nLiterals + i; end model.genconmin.name = 'CNSTR_Obj1'; model.genconind.binvar = 2 * nLiterals + nClauses + 2; model.genconind.binval = 1; model.genconind.a = [zeros(2*nLiterals,1); ones(nClauses,1); zeros(nObj,1)]; model.genconind.sense = '>'; model.genconind.rhs = 4; model.genconind.name = 'CNSTR_Obj2'; % Save model gurobi_write(model, 'genconstr_m.lp'); % Optimize params.logfile = 'genconstr.log'; result = gurobi(model, params); % Check optimization status if strcmp(result.status, 'OPTIMAL') if result.objval > 1.9 fprintf('Logical expression is satisfiable\n'); else if result.objval > 0.9 fprintf('At least four clauses are satisfiable\n'); else fprintf('At most three clauses may be satisfiable\n'); end end else fprintf('Optimization falied\n'); end