Try our new documentation site (beta).


genconstr.m


function genconstr()

% Copyright 2020, Gurobi Optimization, LLC
%
% In this example we show the use of general constraints for modeling
% some common expressions. We use as an example a SAT-problem where we
% want to see if it is possible to satisfy at least four (or all) clauses
% of the logical for
%
% L = (x1 or ~x2 or x3)  and (x2 or ~x3 or x4)  and
%     (x3 or ~x4 or x1)  and (x4 or ~x1 or x2)  and
%     (~x1 or ~x2 or x3) and (~x2 or ~x3 or x4) and
%     (~x3 or ~x4 or x1) and (~x4 or ~x1 or x2)
%
% We do this by introducing two variables for each literal (itself and its
% negated value), a variable for each clause, and then two
% variables for indicating if we can satisfy four, and another to identify
% the minimum of the clauses (so if it one, we can satisfy all clauses)
% and put these two variables in the objective.
% i.e. the Objective function will be
%
% maximize Obj1 + Obj2
%
%  Obj1 = MIN(Clause2, ... , Clause8)
%  Obj2 = 2 -> Clause2 + ... + Clause8 >= 4
%
% thus, the objective value will be two if and only if we can satisfy all
% clauses; one if and only if at least four clauses can be satisfied, and
% zero otherwise.
%


% define primitive data
n         = 4;
nLiterals = 4;
nClauses  = 8;
nObj      = 2;
nVars     = 2 * nLiterals + nClauses + nObj;
Clauses = [
      1, n+2, 3;   2, n+3, 4;
      3, n+4, 1;   4, n+1, 2;
    n+1, n+2, 3; n+2, n+3, 4;
    n+3, n+4, 1; n+4, n+1, 2
    ];

% Create model
model.modelname  = 'genconstr';
model.modelsense = 'max';

% Set-up data for variables and constraints
model.vtype = repmat('B', nVars, 1);
model.ub    = ones(nVars, 1);
model.obj   = [zeros(2*nLiterals + nClauses, 1); ones(nObj, 1)];
model.A     = sparse(nLiterals, nVars);
model.rhs   = ones(nLiterals, 1);
model.sense = repmat('=', nLiterals, 1);

for j = 1:nLiterals
    model.varnames{j} = sprintf('X%d', j);
    model.varnames{nLiterals+j} = sprintf('notX%d', j);
end
for j = 1:nClauses
    model.varnames{2*nLiterals+j} = sprintf('Clause%d', j);
end
for j = 1:nObj
    model.varnames{2*nLiterals+nClauses+j} = sprintf('Obj%d', j);
end

% Link Xi and notXi
for i = 1:nLiterals
    model.A(i, i) = 1;
    model.A(i, nLiterals+i) = 1;
    model.constrnames{i} = sprintf('CNSTR_X%d', i);
end

% Link clauses and literals
for i = 1:nClauses
    model.genconor(i).resvar = 2 * nLiterals + i;
    model.genconor(i).vars = Clauses(i:i,1:3);
    model.genconor(i).name = sprintf('CNSTR_Clause%d', i);
end

% Link objs with clauses
model.genconmin.resvar = 2 * nLiterals + nClauses + 1;
for i = 1:nClauses
    model.genconmin.vars(i) = 2 * nLiterals + i;
end
model.genconmin.name = 'CNSTR_Obj1';

model.genconind.binvar = 2 * nLiterals + nClauses + 2;
model.genconind.binval = 1;
model.genconind.a      = [zeros(2*nLiterals,1); ones(nClauses,1); zeros(nObj,1)];
model.genconind.sense  = '>';
model.genconind.rhs    = 4;
model.genconind.name   = 'CNSTR_Obj2';

% Save model
gurobi_write(model, 'genconstr_m.lp');

% Optimize
params.logfile = 'genconstr.log';
result = gurobi(model, params);

% Check optimization status
if strcmp(result.status, 'OPTIMAL')
    if result.objval > 1.9
        fprintf('Logical expression is satisfiable\n');
    else
        if result.objval > 0.9
            fprintf('At least four clauses are satisfiable\n');
        else
            fprintf('At most three clauses may be satisfiable\n');
        end
    end
else
    fprintf('Optimization falied\n');
end

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization