Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
intlinprog.m
function [x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options) % Copyright 2020, Gurobi Optimization, LLC % %INTLINPROG A mixed integer programming (MIP) example using the % Gurobi MATLAB interface % % This example is based on the intlinprog interface defined in the % MATLAB Optimization Toolbox. The Optimization Toolbox % is a registered trademark of The Math Works, Inc. % % x = INTLINPROG(f,intcon,A,b) solves the MIP problem: % % minimize f'*x % subject to A*x <= b, % x(j) integer, where j is in the vector % intcon of integer constraints. % % For large problems, you can pass A as a sparse matrix and b as a % sparse vector. % % x = INTLINPROG(f,intcon,A,b,Aeq,beq) solves the MIP problem: % % minimize f'*x % subject to A*x <= b, % Aeq*x == beq, % x(j) integer, where j is in the vector % intcon of integer constraints. % % For large problems, you can pass Aeq as a sparse matrix and beq as a % sparse vector. You can set A=[] and b=[] if no inequalities exist. % % x = INTLINPROG(f,intcon,A,b,Aeq,beq,lb,ub) solves the MIP problem: % % minimize f'*x % subject to A*x <= b, % Aeq*x == beq, % lb <= x <= ub, % x(j) integer, where j is in the vector % intcon of integer constraints. % % You can set lb(j) = -inf, if x(j) has no lower bound, and ub(j) = inf, % if x(j) has no upper bound. You can set Aeq=[] and beq=[] if no % equalities exist. % % x = INTLINPROG(f,intcon,A,b,Aeq,beq,lb,ub,X0) solves the problem above % with MIP start set to X0. % % You can set lb=[] or ub=[] if no bounds exist. % % x = INTLINPROG(f,intcon,A,b,Aeq,beq,lb,ub,x0,OPTIONS) solves the % problem above given the specified OPTIONS. Only a subset of possible % options have any effect: % % OPTIONS.Display 'off' or 'none' disables output, % OPTIONS.MaxTime time limit in seconds, % OPTIONS.MaxFeasiblePoints MIP feasible solution limit, % OPTIONS.RelativeGapTolerance relative MIP optimality gap, % OPTIONS.AbsoluteGapTolerance absolute MIP optimality gap. % % x = INTLINPROG(PROBLEM) solves PROBLEM, which is a structure that must % have solver name 'intlinprog' in PROBLEM.solver. You can also specify % any of the input arguments above using fields PROBLEM.f, PROBLEM.A, ... % % [x,fval] = INTLINPROG(f,intcon,A,b) returns the objective value at the % solution. That is, fval = f'*x. % % [x,fval,exitflag] = INTLINPROG(f,intcon,A,b) returns an exitflag % containing the status of the optimization. The values for exitflag and % the corresponding status codes are: % % 2 stopped prematurely, integer feasible point found % 1 converged to a solution % 0 stopped prematurely, no integer feasible point found % -2 no feasible point found % -3 problem is unbounded % % [x,fval,exitflag,OUTPUT] = INTLINPROG(f,intcon,A,b) returns information % about the optimization. OUTPUT is a structure with the following fields: % % OUTPUT.message Gurobi status code % OUTPUT.relativegap relative MIP optimality gap % OUTPUT.absolutegap absolute MIP optimality gap % OUTPUT.numnodes number of branch-and-cut nodes explored % OUTPUT.constrviolation maximum violation for constraints and bounds % % Initialize missing arguments if nargin == 1 if isa(f,'struct') && isfield(f,'solver') && strcmpi(f.solver,'intlinprog') [f,intcon,A,b,Aeq,beq,lb,ub,x0,options] = probstruct2args(f); else error('PROBLEM should be a structure with valid fields'); end elseif nargin < 4 || nargin > 10 error('INTLINPROG: the number of input arguments is wrong'); elseif nargin < 10 options = struct(); if nargin == 9 if isa(x0,'struct') || isa(x0,'optim.options.SolverOptions') options = x0; % x0 was omitted and options were passed instead x0 = []; end else x0 = []; if nargin < 8 ub = []; if nargin < 7 lb = []; if nargin < 6 beq = []; if nargin < 5 Aeq = []; end end end end end end %build Gurobi model model.obj = f; model.A = [sparse(A); sparse(Aeq)]; % A must be sparse n = size(model.A, 2); model.vtype = repmat('C', n, 1); model.vtype(intcon) = 'I'; model.sense = [repmat('<',size(A,1),1); repmat('=',size(Aeq,1),1)]; model.rhs = full([b(:); beq(:)]); % rhs must be dense if ~isempty(x0) model.start = x0; end if ~isempty(lb) model.lb = lb; else model.lb = -inf(n,1); % default lb for MATLAB is -inf end if ~isempty(ub) model.ub = ub; end % Extract relevant Gurobi parameters from (subset of) options params = struct(); if isfield(options,'Display') || isa(options,'optim.options.SolverOptions') if any(strcmp(options.Display,{'off','none'})) params.OutputFlag = 0; end end if isfield(options,'MaxTime') || isa(options,'optim.options.SolverOptions') params.TimeLimit = options.MaxTime; end if isfield(options,'MaxFeasiblePoints') ... || isa(options,'optim.options.SolverOptions') params.SolutionLimit = options.MaxFeasiblePoints; end if isfield(options,'RelativeGapTolerance') ... || isa(options,'optim.options.SolverOptions') params.MIPGap = options.RelativeGapTolerance; end if isfield(options,'AbsoluteGapTolerance') ... || isa(options,'optim.options.SolverOptions') params.MIPGapAbs = options.AbsoluteGapTolerance; end % Solve model with Gurobi result = gurobi(model, params); % Resolve model if status is INF_OR_UNBD if strcmp(result.status,'INF_OR_UNBD') params.DualReductions = 0; warning('Infeasible or unbounded, resolve without dual reductions to determine...'); result = gurobi(model,params); end % Collect results x = []; output.message = result.status; output.relativegap = []; output.absolutegap = []; output.numnodes = result.nodecount; output.constrviolation = []; if isfield(result,'x') x = result.x; if nargout > 3 slack = model.A*x-model.rhs; violA = slack(1:size(A,1)); violAeq = norm(slack((size(A,1)+1):end),inf); viollb = model.lb(:)-x; violub = 0; if isfield(model,'ub') violub = x-model.ub(:); end output.constrviolation = max([0; violA; violAeq; viollb; violub]); end end fval = []; if isfield(result,'objval') fval = result.objval; if nargout > 3 && numel(intcon) > 0 U = fval; L = result.objbound; output.relativegap = 100*(U-L)/(abs(U)+1); output.absolutegap = U-L; end end if strcmp(result.status, 'OPTIMAL') exitflag = 1; elseif strcmp(result.status, 'INFEASIBLE') ... || strcmp(result.status, 'CUTOFF') exitflag = -2; elseif strcmp(result.status, 'UNBOUNDED') exitflag = -3; elseif isfield(result, 'x') exitflag = 2; else exitflag = 0; end % Local Functions ========================================================= function [f,intcon,A,b,Aeq,beq,lb,ub,x0,options] = probstruct2args(s) %PROBSTRUCT2ARGS Get problem structure fields ([] is returned when missing) f = getstructfield(s,'f'); intcon = getstructfield(s,'intcon'); A = getstructfield(s,'Aineq'); b = getstructfield(s,'bineq'); Aeq = getstructfield(s,'Aeq'); beq = getstructfield(s,'beq'); lb = getstructfield(s,'lb'); ub = getstructfield(s,'ub'); x0 = getstructfield(s,'x0'); options = getstructfield(s,'options'); function f = getstructfield(s,field) %GETSTRUCTFIELD Get structure field ([] is returned when missing) if isfield(s,field) f = getfield(s,field); else f = []; end