Try our new documentation site (beta).


gc_pwl_func.R


# Copyright 2023, Gurobi Optimization, LLC
#
# This example considers the following nonconvex nonlinear problem
#
#  maximize    2 x    + y
#  subject to  exp(x) + 4 sqrt(y) <= 9
#              x, y >= 0
#
#  We show you two approaches to solve this:
#
#  1) Use a piecewise-linear approach to handle general function
#     constraints (such as exp and sqrt).
#     a) Add two variables
#        u = exp(x)
#        v = sqrt(y)
#     b) Compute points (x, u) of u = exp(x) for some step length (e.g., x
#        = 0, 1e-3, 2e-3, ..., xmax) and points (y, v) of v = sqrt(y) for
#        some step length (e.g., y = 0, 1e-3, 2e-3, ..., ymax). We need to
#        compute xmax and ymax (which is easy for this example, but this
#        does not hold in general).
#     c) Use the points to add two general constraints of type
#        piecewise-linear.
#
#  2) Use the Gurobis built-in general function constraints directly (EXP
#     and POW). Here, we do not need to compute the points and the maximal
#     possible values, which will be done internally by Gurobi.  In this
#     approach, we show how to "zoom in" on the optimal solution and
#     tighten tolerances to improve the solution quality.

library(gurobi)

printsol <- function(model, result) {
    print(sprintf('%s = %g, %s = %g',
                  model$varnames[1], result$x[1],
                  model$varnames[3], result$x[3]))
    print(sprintf('%s = %g, %s = %g',
                  model$varnames[2], result$x[2],
                  model$varnames[4], result$x[4]))
    print(sprintf('Obj = %g',  + result$objval))

    # Calculate violation of exp(x) + 4 sqrt(y) <= 9
    vio <- exp(result$x[1]) + 4 * sqrt(result$x[2]) - 9
    if (vio < 0.0)
           vio <- 0.0
    print(sprintf('Vio = %g', vio))
}

model <- list()

# Four nonneg. variables x, y, u, v, one linear constraint u + 4*v <= 9
model$varnames <- c('x', 'y', 'u', 'v')
model$lb       <- c(rep(0, 4))
model$ub       <- c(rep(Inf, 4))
model$A        <- matrix(c(0, 0, 1, 4), nrow = 1)
model$rhs      <- 9

# Objective
model$modelsense <- 'max'
model$obj        <- c(2, 1, 0, 0)

# First approach: PWL constraints
model$genconpwl <- list()

intv <- 1e-3

# Approximate u \approx exp(x), equispaced points in [0, xmax], xmax = log(9)
model$genconpwl[[1]]      <- list()
model$genconpwl[[1]]$xvar <- 1L
model$genconpwl[[1]]$yvar <- 3L

xmax <- log(9)
point <- 0
t     <- 0
while (t < xmax + intv) {
    point <- point + 1
    model$genconpwl[[1]]$xpts[point] <- t
    model$genconpwl[[1]]$ypts[point] <- exp(t)
    t <- t + intv
}

# Approximate v \approx sqrt(y), equispaced points in [0, ymax], ymax = (9/4)^2
model$genconpwl[[2]]      <- list()
model$genconpwl[[2]]$xvar <- 2L
model$genconpwl[[2]]$yvar <- 4L

ymax  <- (9/4)^2
point <- 0
t     <- 0
while (t < ymax + intv) {
    point <- point + 1
    model$genconpwl[[2]]$xpts[point] <- t
    model$genconpwl[[2]]$ypts[point] <- sqrt(t)
    t <- t + intv
}

# Solve and print solution
result = gurobi(model)
printsol(model, result)

# Second approach: General function constraint approach with auto PWL
#                  translation by Gurobi

# Delete explicit PWL approximations from model
model$genconpwl <-  NULL

# Set u \approx exp(x)
model$genconexp           <- list()
model$genconexp[[1]]      <- list()
model$genconexp[[1]]$xvar <- 1L
model$genconexp[[1]]$yvar <- 3L
model$genconexp[[1]]$name <- 'gcf1'

# Set v \approx sqrt(y) = y^0.5
model$genconpow           <- list()
model$genconpow[[1]]      <- list()
model$genconpow[[1]]$xvar <- 2L
model$genconpow[[1]]$yvar <- 4L
model$genconpow[[1]]$a    <- 0.5
model$genconpow[[1]]$name <- 'gcf2'

# Parameters for discretization: use equal piece length with length = 1e-3
params                 <- list()
params$FuncPieces      <- 1
params$FuncPieceLength <- 1e-3

# Solve and print solution
result = gurobi(model, params)
printsol(model, result)

# Zoom in, use optimal solution to reduce the ranges and use a smaller
# pclen=1-5 to resolve
model$lb[1] <- max(model$lb[1], result$x[1] - 0.01)
model$ub[1] <- min(model$ub[1], result$x[1] + 0.01)
model$lb[2] <- max(model$lb[2], result$x[2] - 0.01)
model$ub[2] <- min(model$ub[2], result$x[2] + 0.01)
params$FuncPieceLength <- 1e-5

# Solve and print solution
result = gurobi(model, params)
printsol(model, result)

# Clear space
rm(model, result)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization