Try our new documentation site (beta).


genconstr.R


# Copyright 2023, Gurobi Optimization, LLC
#
# In this example we show the use of general constraints for modeling
# some common expressions. We use as an example a SAT-problem where we
# want to see if it is possible to satisfy at least four (or all) clauses
# of the logical for
#
# L = (x0 or ~x1 or x2)  and (x1 or ~x2 or x3)  and
#     (x2 or ~x3 or x0)  and (x3 or ~x0 or x1)  and
#     (~x0 or ~x1 or x2) and (~x1 or ~x2 or x3) and
#     (~x2 or ~x3 or x0) and (~x3 or ~x0 or x1)
#
# We do this by introducing two variables for each literal (itself and its
# negated value), a variable for each clause, and then two
# variables for indicating if we can satisfy four, and another to identify
# the minimum of the clauses (so if it one, we can satisfy all clauses)
# and put these two variables in the objective.
# i.e. the Objective function will be
#
# maximize Obj0 + Obj1
#
#  Obj0 = MIN(Clause1, ... , Clause8)
#  Obj1 = 1 -> Clause1 + ... + Clause8 >= 4
#
# thus, the objective value will be two if and only if we can satisfy all
# clauses; one if and only if at least four clauses can be satisfied, and
# zero otherwise.
#

library(Matrix)
library(gurobi)

# Set up parameters
params <- list()
params$logfile <- 'genconstr.log'

# define primitive data
nLiterals <- 4
nClauses  <- 8
nObj      <- 2
nVars     <- 2 * nLiterals + nClauses + nObj
Literal <- function(n) {n}
NotLit  <- function(n) {n + nLiterals}
Clause  <- function(n) {2 * nLiterals + n}
Obj     <- function(n) {2 * nLiterals + nClauses + n}

Clauses <- list(c(Literal(1), NotLit(2), Literal(3)),
                c(Literal(2), NotLit(3), Literal(4)),
                c(Literal(3), NotLit(4), Literal(1)),
                c(Literal(4), NotLit(1), Literal(2)),
                c(NotLit(1), NotLit(2), Literal(3)),
                c(NotLit(2), NotLit(3), Literal(4)),
                c(NotLit(3), NotLit(4), Literal(1)),
                c(NotLit(4), NotLit(1), Literal(2)))


# Create model
model <- list()
model$modelname  <- 'genconstr'
model$modelsense <- 'max'

# Create objective function, variable names, and variable types
model$vtype    <- rep('B',nVars)
model$ub       <- rep(1,  nVars)
model$varnames <- c(sprintf('X%d',      seq(1,nLiterals)),
                    sprintf('notX%d',   seq(1,nLiterals)),
                    sprintf('Clause%d', seq(1,nClauses)),
                    sprintf('Obj%d',    seq(1,nObj)))
model$obj      <- c(rep(0, 2*nLiterals + nClauses), rep(1, nObj))

# Create linear constraints linking literals and not literals
model$A           <- spMatrix(nLiterals, nVars,
                       i = c(seq(1,nLiterals),
                             seq(1,nLiterals)),
                       j = c(seq(1,nLiterals),
                             seq(1+nLiterals,2*nLiterals)),
                       x = rep(1,2*nLiterals))
model$constrnames <- c(sprintf('CNSTR_X%d',seq(1,nLiterals)))
model$rhs         <- rep(1,   nLiterals)
model$sense       <- rep('=', nLiterals)

# Create OR general constraints linking clauses and literals
model$genconor <- lapply(1:nClauses,
                         function(i) list(resvar=Clause(i),
                                          vars  = Clauses[[i]],
                                          name  = sprintf('CNSTR_Clause%d',i)))

# Set up Obj1 = Min(Clause[1:nClauses])
model$genconmin <- list(list(resvar = Obj(1),
                             vars   = c(seq(Clause(1),Clause(nClauses))),
                             name   = 'CNSTR_Obj1'))


# the indicator constraint excepts the following vector types for the
# linear sum:
#
# - a dense vector, for example
#   c(rep(0, 2*nLiterals), rep(1, nClauses), rep(0,nObj))
# - a sparse vector, for example
#   sparseVector( x = rep(1,nClauses), i = (2*nLiterals+1):(2*nLiterals+nClauses), length=nVars)
# - In case all coefficients are the same, you can pass a vector of length
#   one with the corresponding value which gets expanded to a dense vector
#   with all values being the given one
#
# We use a sparse vector in this example
a <- sparseVector( x = rep(1,nClauses), i = (2*nLiterals+1):(2*nLiterals+nClauses), length=nVars)

# Set up Obj2 to signal if any clause is satisfied, i.e.
# we use an indicator constraint of the form:
#     (Obj2 = 1) -> sum(Clause[1:nClauses]) >= 4
model$genconind <- list(list(binvar = Obj(2),
                             binval = 1,
                             a      = a,
                             sense  = '>',
                             rhs    = 4,
                             name   = 'CNSTR_Obj2'))

# Save model
gurobi_write(model, 'genconstr.lp', params)

# Optimize
result <- gurobi(model, params = params)

# Check optimization status
if (result$status == 'OPTIMAL') {
  if (result$objval > 1.9) {
    cat('Logical expression is satisfiable\n')
  } else if(result$objval > 0.9) {
    cat('At least four clauses are satisfiable\n')
  } else {
    cat('At most three clauses may be satisfiable\n')
  }
} else {
  cat('Optimization failed\n')
}

# Clear space
rm(model,result,params,Clauses)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization