Gurobi solvers deliver critical insights that help aerospace and defense professionals make strategic decisions to reduce production costs and streamline operations while balancing logistical and budget constraints with regulatory, environmental and safety concerns. Learn how optimization is used to solve high-level problems, such as how to get key personnel to places they’re most needed for projects, how to plan for evacuations in the case of impending natural disasters or other threats, or how to design and construct planes and spacecraft to reduce weight without sacrificing strength.
Gurobi delivers blazing speeds and advanced features—backed by brilliant innovators and expert support.
With our powerful algorithms, you can add complexity to your model to better represent the real world, and still solve your model within the available time.
Our development team includes the brightest minds in decision-intelligence technology--and they're continually raising the bar in terms of solver speed and functionality.
Our PhD-level experts are here when you need them—ready to provide comprehensive guidance and technical support. They bring deep expertise in working with commercial models and are there to assist you throughout the process of implementing and using Gurobi.
Dive deep into sample models, built with our Python API.
How can mathematical optimization be used to measure the efficiency of an organization? Find out in this example, where you’ll learn how to formulate an Efficiency Analysis model as a linear programming problem using the Gurobi Python API and then generate an optimal solution with the Gurobi Optimizer. This model is example 22 from the fifth edition of Model Building in Mathematical Programming by H. Paul Williams on pages 278-280 and 335-336. This example is at the intermediate level, where we assume that you know Python and the Gurobi Python API and that you have some knowledge of building mathematical optimization models.
Learn MoreIn this example, you’ll discover how mathematical optimization can be used to address a macroeconomic planning problem that a country may face. We’ll show you how to model and solve an input-output problem encompassing the interrelationships between the different sectors of a country’s economy. This model is example 9 from the fifth edition of Model Building in Mathematical Programming by H. Paul Williams on pages 263-264 and 316-317. This modeling example is at the intermediate level, where we assume that you know Python and are familiar with the Gurobi Python API. In addition, you should have some knowledge about building mathematical optimization models.
Learn MoreIn this example, you’ll learn how to solve a critical, central problem in the services industry: workforce scheduling. We’ll demonstrate how you can use mathematical optimization to generate an optimal workforce schedule that meets your business requirements, maximizes employee fairness and satisfaction, and minimizes the number of temporary workers your company needs to hire. This modeling example is at the advanced level, where we assume that you know Python and the Gurobi Python API and that you have advanced knowledge of building mathematical optimization models. Typically, the objective function and/or constraints of these examples are complex or require advanced features of the Gurobi Python API.
Learn MoreMathematical optimization uses the power of math to find the best possible solution to a complex, real-life problem. You input the details of your problem—the goals you want to achieve, the limitations you’re facing, and the variables you control—and the mathematical optimization solver will calculate your optimal set of decisions.
80% of the world’s leading companies use mathematical optimization to make optimal business decisions. For example, Air France uses it to build the most efficient schedule for its entire fleet, in order to save on fuel and operational costs, while reducing delay propagation.
Descriptive and predictive analytics show you what has happened in the past, why it happened, and what’s likely to happen next. But to decide what to do with that information, you need human input—which can introduce bias.
With mathematical optimization, you receive a decision recommendation based on your goals, constraints, and variables alone. You can, of course, involve human input when it comes to whether or not to act on that recommendation. Or you can bypass human input altogether and automate your decision-making.
No results found.
GUROBI NEWSLETTER
Latest news and releases
Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.
Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.